STORMWATER POLLUTION PREVENTION PLAN

for

Stormytown Road Subdivision 39 Stormytown Road Town of Ossining, New York

Prepared For:

Chocolate Sky, LLC 81 Meyersville Road Chatham, New Jersey 07928

Prepared By:

Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C. One North Broadway, Suite 910 White Plains, New York 10601

> March 29, 2021 Revised April 28, 2021

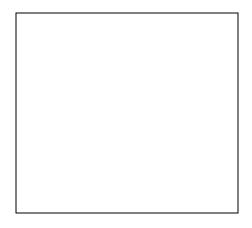
Project No.: 190065801

One North Broadway, Suite 910 White Plains, NY 10601 T:

T: 914.323.7400

F: 914.323.7401

www.langan.com


New Jersey • New York • Connecticut • Massachusetts • Pennsylvania • Washington, DC • West Virginia • Ohio • Florida • Texas • Colorado • Arizona • Washington • California Athens • Calgary • Dubai • London • Panama

Preparer of the SWPPP

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the SPDES General Permit for Stormwater Discharges from Construction Activity. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil or administrative proceedings.

Name: <u>Michael Finan, PE, LEED-AP</u>

Date: <u>April 28, 2021</u>

Table of Contents

1	Exect	utive Summary1
2	Proje	ct Information2
3	Site (3.1 3.2 3.3 3.4	Conditions
4	Storn 4.1 4.2	Awater Management Plan4Stormwater Site Planning44.1.1Preservation of Natural Features and Conservation44.1.2Reduction of Impervious Cover54.1.3Runoff Reduction Techniques54.1.4Standard Stormwater Management Practices7Hydrologic Analysis84.2.1Drainage Patterns84.2.2Stormwater Modeling84.2.3Water Quality Control94.2.4Runoff Reduction Volume94.2.5Water Quantity Control10
5	Erosi 5.1 5.2 5.3 5.4	on and Sediment Control Plan
6	Storn 6.1 6.2 6.3 6.4	nwater Pollution Prevention Plan Implementation15Certification Statements15Pre-Construction Meeting16Construction Site Log16Construction Inspections and Maintenance166.4.1Contractor Maintenance Inspection Requirements166.4.2Qualified Inspector Inspection Requirements17
7	Term	ination of Coverage17
8	Post- 8.1 8.2	Construction Requirements18Record Retention18Inspection and Maintenance18

Table of Contents

9	Conclusion	. 1	8
---	------------	-----	---

Tables

Table 1-1:	Overall Summary of Peak Discharge Rates	.1
Table 2-1:	Project Summary	.2
	USDA Soil Data	
Table 4-1:	Preservation of Natural Features and Conservation	.4
Table 4-2:	Reduction of Impervious Cover	.5
Table 4-3:	Runoff-Reduction Practices	.6
Table 4-4:	Standard Stormwater Management Practices	.7
Table 4-5:	Rainfall Data	.9
Table 4-6:	Total Water Quality Volume	.9
Table 4-7:	Implemented Runoff Reduction Volume Techniques	.9
Table 4-8:	Summary of Channel Protection Volume1	0
Table 4-9:	Summary of Peak Discharge Rates1	0
Table 5-1:	Soil Restoration1	4

Figures

- Figure 1: Site Location Map
- Figure 2: Soils Map
- Figure 3: Flood Insurance Rate Map
- Figure 4: Cultural Resources
- Figure 5: Pre-Development Watershed Map
- Figure 6: Post-Development Watershed Map

Appendices

- Appendix A: NYSDEC SPDES General Permit
- Appendix B: NYSDEC SPDES General Permit Forms
- Appendix C: Certification Statements
- Appendix D: Example Inspection Form
- Appendix E: Design Calculations
- Appendix F: Pre-Development Stormwater Analysis
- Appendix G: Post-Development Stormwater Analysis
- Appendix H: Post-Construction Inspection & Maintenance

1 Executive Summary

This Stormwater Pollution Prevention Plan (SWPPP) and accompanying project plans have been prepared in accordance with the New York State Department of Environmental Conservation (NYSDEC) State Pollutant Discharge Elimination System (SPDES) General Permit for Stormwater Discharges from Construction Activity (General Permit) latest revision, the *New York State Stormwater Management Design Manual (Design Manual)* latest revision, and the *New York State State Standards and Specifications for Erosion and Sediment Control* latest revision. The Applicant, Chocolate Sky, LLC, is proposing to develop ±6.7 acre property at 39 Stormytown Road, in the Town of Ossining, New York. The project, Stormytown Road Subdivision, is a 9 lot residential subdivision.

The proposed project is a new development that will maintain existing drainage patterns as much as practical, control the rate of stormwater runoff resulting from the development, and mitigate potential impacts on water quality and erosion generated during and after construction. A combination of runoff reduction techniques and standard stormwater management practices with runoff reduction volume capacity will be used to treat stormwater runoff.

The pre- and post-development conditions were analyzed using the USDA Soil Conservation Service Publication Technical Release (TR-55) "Urban Hydrology for Small Watersheds", which provides procedures for estimating runoff and peak discharges in small watersheds. The analysis is based upon the watershed areas, land coverage, soil group types, curve numbers (CN), times of concentration (Tc), rainfall distribution type, and rainfall amount for the design storm events. The pre- and post-development peak discharge rates of runoff have been evaluated utilizing stormwater modeling software. An overall comparison of the pre- and post-development peak discharge rates for each of the design storms analyzed is provided in the table below.

	ruble i i. Overun Gummary of Feak Disonarge nates				
Storm Event	Pre (cfs)	Post (cfs)	Diff (cfs)		
1-year	4.38	2.62	-1.76		
10-year	17.01	15.69	-1.32		
100-year	43.74	39.68	-4.06		

 Table 1-1: Overall Summary of Peak Discharge Rates

The overall comparison of the pre- and post-development stormwater runoff peak discharge rates demonstrates no significant adverse impacts to the design points analyzed. In addition, the erosion control, sediment control, pollution-prevention, and stormwater management measures to be implemented during construction as outlined in this SWPPP and project drawings will minimize soil erosion and control sediment transport off site, and after construction will control the water quality and quantity of stormwater runoff.

2 **Project Information**

The Applicant is proposing to develop a property in the Town of Ossining, New York (see <u>Figure</u> <u>1</u>). Below is a summary of the project information:

Table 2-1: Project Summary				
Project Name:	Stormytown Road Subdivision			
Project Location:	39 Stormytown Road Town of Ossining, New York			
Property Tax ID No.:	Block 3 Lot 62			
Property Acreage:	±6.7 acres			
Municipality:	Town of Ossining, which is an municipal separate storm sewer system (MS4)			
Project Description:	9 lot single-family residential subdivision with a ±721 linear foot roadway with sidewalk			
Estimated Disturbed Area:	4.6 acres, which does require coverage under the SPDES General Permit			
Existing Site Conditions:	Woods (fair condition), grass (fair condition), impervious area (pavement, buildings)			
	±0.3 acres of existing impervious area			
Proposed Site Conditions:	Woods (fair condition), grass (good condition), impervious area (pavement, buildings, concrete sidewalks and walkways)			
	±1.4 acres of proposed impervious area			
Stormwater Management Practices:	Infiltration basin and underground infiltration chambers			
Construction Duration:	From spring 2022 to fall 2023, including planned winter shutdowns.			

Table 2-1: Project Summary

Coverage under the New York State Department of Environmental Conservation (NYSDEC) State Pollutant Discharge Elimination System (SPDES) General Permit for Stormwater Discharges from Construction Activity (General Permit) latest revision will be required (see <u>Appendix A</u>), since the project involves soil disturbance of 1 or more acres. The proposed project is also in a municipal separate storm sewer system (MS4); therefore, the (city, town, village) of (name) will review and accept the SWPPP. The Notice of Intent (NOI) form and signed "MS4 SWPPP Acceptance" form will be submitted to the NYSDEC before construction begins to obtain coverage under the SPDES General Permit. The forms have been provided in <u>Appendix B</u>.

3 Site Conditions

3.1 Soils

The United States Department of Agriculture (USDA) Soil Conservation Service Soil Survey for Westchester County has been reviewed. The surficial soil conditions are shown in <u>Figure 2</u> and are summarized in the table below.

Table 3-1: USDA Soil Data						
Map Symbol	Description	Depth to Groundwater (ft.)	Depth to Bedrock (ft)	Hydrologic Soil Group		
ChE	Charlton loan, 25 to 35 percent slopes	>6.0	>6.0	В		
CrC	Charlton-Chatfield complex, 0 to 15 percent slopes very rocky	>6.0	>6.0	В		
CuD	Chatfield-Hollis-Rock outcrop complex, 15 to 35 percent slopes	>6.0	2.5	D		
LcB	Leicester loam, 3 to 8 percent slopes, stony	1.0	>6.0	A/D ¹		
PnC	Paxton fine sandy loam, 8 to 15 percent slopes	2.0	2.0	С		

1. Dual hydrologic soil groups cannot be model. Therefore, hydrologic soil group D will be used to be conservative.

Deep tests were performed on March 29, 2019 by Fusion Engineering PC on each of the residential lots and in the road. The results of the soil testing is provided in report entitled "Stormwater Pollution Prevention Plan Engineer's Report for Rinadli Property" prepared by Fusion Engineering PC last revised July 27, 2019 and summarized below:

- Test Pit 1 was excavated to a depth of 72 inches. Groundwater was not encountered. Rock was encountered 72 inches below existing grade.
- Test Pits 2 and 3 were excavated to a depth of 80 inches. Groundwater was not encountered. Rock was encountered 80 inches below existing grade.
- Test Pits 4, 5, 6, 7, 8, 9, and 10 were excavated to a depth of 84 inches. Groundwater and rock were not encountered.
- Test Pit 11 was excavated to a depth of 84 inches. Groundwater seepage was observed at 36 inches. Rock were not encountered.
- Test Pit 12 was excavated to a depth of 84 inches. Groundwater seepage was observed at 24 inches. Rock were not encountered.

Percolation tests were performed at Test Pit 5 and Test Pit 6. The percolation rates ranged from 13.33 to 14.67 minutes per inch (4.1 to 4.5 inches per hour). Refer to the Fusion Engineering PC engineer's report for additional information.

3.2 Water Resources

There are no wetlands present on the property. There is a stream that flows through a portion of the site, which starts at the outfall of twin 48 inch diameter culverts. The stream has a 50 foot setback requirement.

Aquifer mapping was reviewed to determine whether the site is over a sole source, primary or principal aquifer. According to the Environmental Protection Agency "Sole Source Aquifers" map, the site is not over a sole-source aquifer. According to the NYSDEC "Primary and Principal Aquifers in New York State" map, the site is not over a primary aquifer or a principal aquifer.

3.3 Floodplains

The Flood Insurance Rate Map (FIRM) was reviewed and the property is not located within a floodplain (see Figure 3).

3.4 Cultural Resources

According to the New York State Office of Parks, Recreation and Historic Preservation (NYSOPRHP) Cultural Resource Information System (CRIS) database, the site is within an archaeologically sensitive area (see <u>Figure 4</u>).

4 Stormwater Management Plan

4.1 Stormwater Site Planning

4.1.1 Preservation of Natural Features and Conservation

Preservation of natural features includes techniques to identify and preserve natural areas that can be used to protect water, habitat and vegetative resources. Conservation includes designing elements of the development in a way that the site design takes advantage of a site's natural features, preserves sensitive areas and identifies constraints and opportunities to prevent or reduce negative effects of a development. An evaluation of the preservation of natural features and conservation planning practices is provided in the table below.

Practice	Description	Incorporated	Reason		
Preservation of	Delineate and place into permanent	Considered	Areas are not being fully		
Undisturbed Areas	conservation undisturbed forests, native vegetated areas, riparian corridors,	and Not Applied	disturbed; however, these areas are not being placed		
	wetlands, and natural terrain.		into permanent		
			conservation easements.		
Preservation of Buffers	Define, delineate and preserve naturally vegetated buffers along perennial streams, rivers, shorelines and wetlands.	Considered and Applied	N/A		
Reduction of Clearing and Grading	Limit clearing and grading to the minimum amount needed for roads, driveways, foundations, utilities and stormwater management facilities.	Considered and Applied	N/A		

 Table 4-1: Preservation of Natural Features and Conservation

Practice	Description	Incorporated	Reason
Locating Development in Less Sensitive Areas	Avoid sensitive resource areas such as floodplains, steep slopes, erodible soils, wetlands, mature forests and critical habitats by locating development to fit the terrain in areas that will create the least impact.	Considered and Applied	N/A
Open Space Design	Use clustering, conservation design or open space design to reduce impervious cover, preserve more open space and protect water resources.	N/A	
Soil Restoration	Restore the original properties and porosity of the soil by deep till and amendment with compost to reduce the generation of runoff and enhance the runoff reduction performance of post construction practices.	Considered and Applied	N/A

4.1.2 Reduction of Impervious Cover

Reduction of impervious cover includes methods to reduce the amount of rooftops, parking lots, roadways, sidewalks, and other surfaces that do not allow rain to infiltrate into the soil. An evaluation of the reduction of impervious cover techniques is provided in the table below.

Table 4-2: Reduction of Impervious Cover					
Practice	Description	Incorporated	Reason		
Roadway Reduction	Minimize roadway widths and lengths to reduce site impervious area	Considered and Not Applied	In order to minimize the driveway lengths, the road has to extend farther into the site.		
Sidewalk Reduction	Minimize sidewalk lengths and widths to reduce site impervious area	Considered and Applied	N/A		
Driveway Reduction	Minimize driveway lengths and widths to reduce site impervious area	Considered and Applied	N/A		
Cul-de-sac Reduction	Minimize the number of cul-de-sacs and incorporate landscaped areas to reduce their impervious cover.	Considered and Not Applied	A cul-de-sac is required, since the road cannot connect to an adjacent roadway.		
Building Footprint Reduction	Reduce the impervious footprint of residences and commercial buildings by using alternate or taller buildings while maintaining the same floor to area ratio.	Considered and Applied	N/A		
Parking Reduction	Reduce imperviousness on parking lots by eliminating unneeded spaces, providing compact car spaces and efficient parking lanes, minimizing stall dimensions, using porous pavement surfaces in overflow parking areas, and using multi-storied parking decks where appropriate.	N/A			

Table 4-2: Reduction of Impervious Cover

4.1.3 Runoff Reduction Techniques

Green infrastructure techniques use the natural features of the site and promote runoff reduction through micromanaging runoff, promoting groundwater recharge, increasing losses through

evapotranspiration, and emulating the existing hydrology. An evaluation of the runoff reduction practices is provided in the table below.

.	Table 4-3: Runoff-Reduction		-
Practice	Description	Incorporated	Reason
Conservation of Natural Areas	Retain the pre-development hydrologic and water quality characteristics of undisturbed natural areas, stream and wetland buffers by restoring and/or permanently conserving these areas on a site.	Considered and Not Applied	Areas are not being fully disturbed; however, these areas are not being placed into permanent conservation easements.
Sheet flow to Riparian Buffers or Filter Strips	Undisturbed natural areas such as forested conservation areas and stream buffers or vegetated filter strips and riparian buffers can be used to treat and control stormwater runoff from some areas of a development project.	Considered and Applied	N/A
Vegetated Open Swale	The natural drainage paths, or properly designed vegetated channels, can be used instead of constructing underground storm sewers or concrete open channels to increase time of concentration, reduce the peak discharge, and provide infiltration.	N/A	
Tree Planting/Tree Box	Plant or conserve trees to reduce stormwater runoff, increase nutrient uptake, and provide bank stabilization. Trees can be used for applications such as landscaping, stormwater management practice areas, conservation areas and erosion and sediment control.	Considered and Not Applied	Plantings are proposed; the plantings are not within close proximity to impervious areas or are being installed in stormwater management practices.
Disconnection of Rooftop Runoff	Direct runoff from residential rooftop areas and upland overland runoff flow to designated pervious areas.	Considered and Not Applied	The existing site topography slopes exceed the slope requirements.
Stream Daylighting for Redevelopment Projects	Stream daylight previously culverted/ piped streams to restore natural habitats, better attenuate runoff by increasing the storage size and promoting infiltration.	N/A	
Rain Garden	Manage and treat small volumes of stormwater runoff using a conditioned planting soil bed and planting materials to filter runoff stored within a shallow depression.	Considered and Not Applied	Another stormwater management practice is being used.
Green Roof	Capture runoff through a layer of vegetation and soil installed on top of a conventional flat or sloped roof.	Considered and Not Applied	Another stormwater management practice is being used.
Stormwater Planter	Small landscaped stormwater treatment devices that can be designed as infiltration or filtering practices.	Considered and Not Applied	Another stormwater management practice is being used.
Rain Tank/Cistern	Capture and store stormwater runoff to be used for irrigation systems or filtered and reused for non-contact activities.	Considered and Not Applied	Another stormwater management practice is being used.
Porous Pavement	Pervious types of pavements that provide an alternative to conventional paved surfaces, designed to infiltrate rainfall through the surface.	Considered and Not Applied	Another stormwater management practice is being used.

Table 4-3: Runoff-Reduction Practices

4.1.4 Standard Stormwater Management Practices

Standard stormwater management practices (SMPs) are structural practices that are designed to capture and treat the water quality volume. Some of the standard SMPs can also provide runoff reduction or water quantity controls. An evaluation of the standard SMPs is provided in the table below.

Practice Description Incorporated Reason					
	Description	Incorporated	Reason		
Stormwater Ponds	Constructed stormwater retention basins that have a permanent pool (or micropool). Runoff from each rain event is detained and treated in the pool. Can be used to treat hostspot runoff if 2 feet minimum separation to seasonally groundwater is provided or if a permeable liner is provided.	Considered and Not Applied	Using a standard practice that provides both water quality treatment and runoff reduction.		
Stormwater Wetlands	Constructed stormwater wetlands that are structural practices that incorporate wetland plants to store and treat runoff. Can be used to treat hostspot runoff if 2 feet minimum separation to seasonally groundwater is provided.	Considered and Not Applied	Using a standard practice that provides both water quality treatment and runoff reduction.		
Stormwater Infiltration	Excavated trench or basin used to capture and allow for infiltration into the surrounding soils from the bottom and sides of the basin or trench. Also, a standard stormwater practice that also provides runoff reduction volume capacity.	Considered and Applied	N/A		
Underground Infiltration System	An underground perforated piping or chambers used to capture and allow for infiltration into the surrounding soils from the bottom and sides. Also, a standard stormwater practice that also provides runoff reduction volume capacity.	Considered and Applied	N/A		
Stormwater Filtering Systems – Sand or Organic	Aboveground or underground multi-chamber practice designed to treat stormwater runoff through filtration using a sediment forebay, primary filter media and underdrain. Can be used to treat hostspot runoff if a permeable liner is provided.	Considered and Not Applied	Using a standard practice that provides both water quality treatment and runoff reduction.		
Stormwater Filtering Systems – Bioretention	Shallow basin or landscaped area that uses engineered soils and vegetation to capture and treat runoff. Can be used to treat hostspot runoff if a permeable liner is provided. Also, a standard stormwater practice that also provides runoff reduction volume capacity.	Considered and Not Applied	Using a standard practice that provides both water quality treatment and runoff reduction.		
Stormwater Open Channel Systems - Dry Swale	Vegetated channel that captures and treats runoff within dry cells formed by check dams or other means. Can be used to treat hostspot runoff if a permeable liner is provided. Also, a standard stormwater practice that also provides runoff reduction volume capacity.	Considered and Not Applied	The topography does not allow for incorporation of swales.		

Table 4-4: Standard Stormwater Management Practices

Practice	Description	Incorporated	Reason
Stormwater Open Channel Systems - Wet Swale	Vegetated channel that captures and treats runoff within wet cells formed by check dams or other means.	Considered and Not Applied	The topography does not allow for incorporation of swales.
Hydrodynamic Separator	Proprietary practice used to provide pretreatment in new development and treatment in redevelopment.	N/A	

4.2 Hydrologic Analysis

4.2.1 Drainage Patterns

In existing conditions, runoff generally flows in a southerly direction over land and into the onsite portion of the stream. In the proposed conditions, stormwater runoff will continue to flow overland in the same direction as in existing conditions. High and low points are proposed within the driveways and road to aide in the collection of stormwater runoff. The collected stormwater runoff will be conveyed to the stormwater management system for treatment.

4.2.2 Stormwater Modeling

The USDA Soil Conservation Service Publication Technical Release (TR-55) "Urban Hydrology for Small Watersheds" has been used to analyze the pre- and post-development rainfall runoff rates and volumes. Watershed areas, curve numbers (CN), and times of concentration (Tc) were calculated for each contributing watershed. The curve number is a land-sensitive coefficient that dictates the relationship between total rainfall depth and direct storm runoff. Based on the land coverage and soil group types, the average CN has been determined for each of the subcatchments for both the existing and proposed conditions.

The Tc is defined as the time for runoff to travel from the hydraulically most distant point in the watershed to a Design Point (DP). Values of the time of concentration were determined for both the pervious and impervious area of each watershed for both the existing and proposed conditions based on land cover and slope of the flow path using methods outlined in TR-55. As per TR-55, the minimum Tc used in 0.1 hours (for 6 minutes).

An overall watershed boundary was developed for the pre- and post-development conditions (see <u>Figure 5</u> and <u>Figure 6</u>, respectively). The overall watershed was broken down into smaller watersheds, or subcatchments to allow for analysis of runoff conditions at several locations. Each of these locations is defined as a Design Point (DP) to compare the proposed development to the existing conditions. Descriptions of each of the selected design points are provided below:

• <u>Design Point 1</u>: onsite/offsite stream

Rainfall data used in the modeling and analysis was obtained from the isohyet maps provided in the *Design Manual* and the Northeast Regional Climate Center (NRCC). A Type III rainfall distribution was used to evaluate the pre- and post-development stormwater runoff conditions for the 1-, 10-, and 100-year 24-hour storm events. The rainfall data used in the stormwater management design and analysis is provided in the table below.

Table 4-5. Raillan Data		
Storm Event	24-Hour Rainfall	
90 th Percentile ^(1,2)	1.50 inches	
1-year	2.78 inches	
2-year ⁽³⁾	3.41 inches	
10-year	5.14 inches	
100-year	9.29 inches	
1 The 90 th perceptile 2/1-hour rain	fall value was taken from the New York	

Table 4-5: Rainfall Data

1. The 90th percentile 24-hour rainfall value was taken from the *New York State Stormwater Management Design Manual.* The other 24-hour rainfall values are taken from NRCC.

2. The 90th percentile 24-hour rainfall amount was used to calculate the required total water quality volume.

3. The 2-year 24-hour rainfall amount was used to calculate the sheet flow component in the time of concentration.

The rainfall data used in the stormwater management design and analysis is provided in <u>Appendix</u> <u>E</u>. The results of the computer modeling used to analyze the pre- and post-development watershed conditions are provided in <u>Appendix F</u> and <u>Appendix G</u>, respectively.

4.2.3 Water Quality Control

The water quality volumes have been determined based on the methodology described in the Design Manual. The total water quality volume is provided in the table below.

Table 4-0. Total Water Quality volume			
Subcatchment	Area (ac)	Impervious Area (ac)	WQ _v (cf)
201	0.22	0.09	486
202	0.03	0.03	167
203	0.03	0.03	167
301	3.33	1.08	6,205
Total	3.61	1.23	7,025

 Table 4-6: Total Water Quality Volume

Detailed design calculations have been provided in <u>Appendix E</u>.

4.2.4 Runoff Reduction Volume

The runoff-reduction-volume techniques that were used to reduce the total required water quality volume are in the table below.

Techniques/ Practices	RRv Reduction Method	Reduction Amount	
Infiltration Practice	Standard SMP with RRv	100% of the WQv provided by	
	capacity	the practice	
Underground Infiltration	Standard SMP with RRv	100% of the WQv provided by	
System	capacity	the practice	

Table 4-7: Implemented Runoff Reduction Volume Techniques

After applying the above runoff-reduction techniques, the total required water quality volume was reduced 100 percent. Detailed design calculations have been provided in <u>Appendix E</u>.

4.2.5 Water Quantity Control

A comparison of the required and provided channel protection volume is provided in the table below.

Table 4-8: Summary of Channel Protection Volume			
Water Quantity Parameter	Required (cf)	Provided (cf)	
Channel Protection Volume	8,696	17,305	

A comparison of the pre- and post-development peak discharge rates is provided in the table below.

Table 4-9: Summary of Peak Discharge Rates				
Storm Event	Design Point	Pre (cfs)	Post (cfs)	Diff (cfs)
1-year	1	4.38	2.62	-1.76
10-year	1	17.01	15.69	-1.32
100-year	1	43.74	39.68	-4.06

Table 4.0. Cummany of Deals Dischause Dates

Comparison of the peak discharge rates for pre- and post-development watershed conditions demonstrates that the peak rate of runoff from the proposed development will not be increased. The pre- and post-development stormwater models have been provided in Appendix F and Appendix G, respectively.

Erosion and Sediment Control Plan 5

Construction Phasing 5.1

Construction will be implemented in a single phase in the following order:

- 1. Install erosion, sediment, and pollution prevention measures:
 - a. The existing driveway will be used for site access.
 - b. Tag/mark all trees to be removed.
 - c. Install tree protection around the trees to remain.
 - d. Install silt fence along the limit of disturbance.
 - e. Install temporary sanitary facilities (i.e., portable toilets) in a location at least 20 feet from any drainage facility or flow path. Temporarily stake the facility to prevent accidental tipping from construction activity or wind.
 - f. Install waste container and maintain rigorous site cleaning schedule to prevent debris from blowing offsite. Construction waste shall be stored in a dumpster and carried offsite on a regular basis.
 - g. Allocate concrete washout areas.
- 2. All existing structures to be demolished, except for the existing house and septic field. The existing house and septic field are to remain functional construction is completed to serve as a construction trailer.
- 3. Clearing and grubbing:

- a. Strip and stockpile topsoil. Initiate cover practices and sediment controls at the base of the stockpile. Stockpile can be temporarily stabilized with tarp or mulch and/or temporary seeding.
- b. Disturbed areas where construction will cease for more than 7 days will be stabilized with erosion controls, such hydro-seeding, hydro-mulch, or straw. Straw mulch shall be applied at the rate of 2 tons per acre.
- 4. Construct temporary erosion control measures including temporary sediment traps, swales, and sediment control measures.
- 5. Excavate to foundations subgrade elevation and Install dewatering practice if necessary.
- 6. Construct improvements.
- 7. Demolish existing house and Install subsurface storage system and site drainage to capture runoff.
- 8. Final stabilization of disturbed areas:
 - a. Install minimum 6" topsoil and final stabilize with lawn or mulch in landscape areas. Refer to Section 5.4 for all soil restoration requirements.
 - b. Remove all temporary erosion, sediment and pollution prevention measures once the site has achieved final stabilization.

5.2 Erosion and Sediment Control Measures

Temporary erosion and sediment control measures to be used during construction generally include the following:

- **Stabilized Construction Access** Before construction, the stabilized construction access shall be installed to reduce the tracking of sediment onto adjacent roadways. Construction traffic must enter and exit the site at the stabilized construction access. The stabilized construction access shall be maintained in good condition to control tracking of sediment onto rights-of-way or streets. When necessary, the placement of additional aggregate atop the filter fabric shall be done to maintain the minimum thickness. Sediments and soils spilled, dropped, or washed onto the public rights-of-way shall be removed immediately.
- **Dust Control** Water trucks or other approved water source shall be used, as needed, during construction to reduce dust generated on the site. Dust control shall be provided by the general contractor to a degree acceptable to the owner/operator, and in compliance with the applicable local and state dust control requirements.
- Temporary Soil Stockpile Materials, such as topsoil, shall be temporarily stockpiled (if necessary) on site during construction. Stockpiles shall be located away from storm drainage, water bodies or courses, and shall be properly protected from erosion in accordance with the NYSDEC standard detail.
- **Silt Fencing** Before initiation of and during construction, silt fencing shall be established along the perimeter of areas to be disturbed as a result of the construction up gradient of

water courses or adjacent properties. These barriers may extend into non-impact areas to adequately protect adjacent lands. Clearing and grubbing shall be performed only as necessary for the installation of the sediment control barrier. To maximize effectiveness of the silt fencing, daily inspections shall be performed by site personnel. Maintenance of the fence shall be performed as needed and when directed by the Qualified Inspector.

- **Temporary Seeding** Within seven days after construction ceases on any particular area of the site, all disturbed areas where there shall be no construction for longer than 14 days shall be temporarily seeded and mulched to minimize erosion and sediment loss. Other stabilization methods maybe approved by the Qualified Inspector.
- Inlet Protection Inlet protection shall be installed around existing and proposed catch basins (once installed) to keep sediment from entering the storm-sewer system. During construction, the inlet protection measures shall be replaced as needed to ensure proper function of the structure.
- **Temporary Sediment Basins and Traps** Temporary sediment basins and traps shall be constructed to intercept sediment laden runoff, reduce the amount of sediment leaving the disturbed areas, and protect drainage ways, properties, and rights-of-way. Projects that have proposed stormwater ponds can be used as temporary sediment basins during construction. Temporary sediment basins and traps shall be inspected at least every seven days. All damage caused by soil erosion and construction equipment shall be repaired upon discovery. Accumulated sediment shall be removed from the sediment basin or trap when it reaches 50 percent of the design capacity and must not exceed 50 percent. Sediment must not be placed downstream from the embankment, adjacent to a stream, or floodplain.
- **Erosion Control Matting** Erosion control matting shall be installed on all slopes exceeding 3:1. Erosion control matting shall provide protection from temporary erosion, establishment of rapid vegetation, and long-term resistance of erosion to shear stresses associated with high runoff flow velocities associated with steep slopes.
- **Dewatering** Dewatering, if required, must not be discharged directly into wetlands, water courses, water bodies, and storm sewer systems without appropriate protection or authorizations. Proper methods and devices shall be used to the extent permitted by law, such as pumping water into temporary sediment basins, providing surge protection at the inlet and outlet of pumps, floating the intake of the pump, or other methods to minimize and retain the suspended solids.

Permanent erosion and sediment control measures to be used after construction generally include the following:

• Establish Permanent Vegetation - Disturbed areas not covered by impervious surfaces shall be seeded in accordance with the accompanying plans. The type of seed, mulch, and maintenance measures shall be followed. All areas at final grade shall be seeded and mulched within 14 days after completion of the major construction. All seeded areas shall be protected with mulch or hay. Final site stabilization is achieved when soil-disturbing activities have been completed and a uniform, perennial vegetative cover with a density of 80 percent has been established or equivalent stabilization measures (such as the use

of mulches or geotextiles) have been employed on the disturbed unpaved areas and areas not covered by permanent structures.

• **Rock Outlet Protection** - Rock outlet protection shall be installed at the locations as shown on the accompanying plans. The installation of rock outlet protection will reduce the depth, velocity, and energy of water, such that the flow will not erode the receiving water course or water body.

5.3 Pollution Prevention Controls

Good housekeeping practices are designed to maintain a clean and orderly work environment. Good housekeeping measures shall be maintained throughout the construction process by those parties involved with the direct care and development of the site. The following measures shall be implemented to control the possible exposure of harmful substances and materials to stormwater runoff:

- Material resulting from the clearing and grubbing operation shall be stockpiled away from storm drainage, water bodies or watercourses and surrounded with adequate erosion and sediment control measures. Soil stockpile locations shall be exposed no longer than 14 days before seeding.
- Equipment maintenance areas shall be protected from stormwater flows and shall be supplied with appropriate waste receptacles for spent chemicals, solvents, oils, greases, gasoline, and any pollutants that might contaminate the surrounding habitat or water supply. Equipment wash-down zones shall be within areas draining to sediment control devices.
- 3. The use of detergents for large-scale (e.g., vehicles, buildings, pavement surfaces) washing is prohibited.
- 4. Material storage locations and facilities (e.g., covered storage areas, storage sheds) shall be on-site and shall be stored according to the manufacturer's standards in a dedicated staging area. Chemicals, paints, solvents, fertilizers, and other toxic material shall be stored in waterproof containers. Runoff containing such materials shall be collected, removed from the site, treated and disposed of at an approved solid waste or chemical disposal facility.
- 5. Hazardous spills shall be immediately contained to prevent pollutants from entering the surrounding habitat or water supply. Spill Kits shall be provided on site and shall be displayed in a prominent location for ease of access and use. Spills greater than 5 gallons shall be reported to the NYSDEC Response Unit at 1-800-457-7362. In addition, a record of the incidents or notifications shall be documented and attached to the SWPPP.
- 6. Portable sanitary waste facilities shall be provided on site for workers and shall be properly maintained.
- 7. Dumpsters or debris containers shall be on site and shall be of adequate size to manage respective materials. Regular collection and disposal of wastes must occur as required.

- 8. Temporary concrete washout facilities shall be a minimum of 50 feet from storm drain inlets, open drainage facilities, and watercourses. Each facility should be away from construction traffic or access areas to prevent disturbance or tracking. A sign shall be installed adjacent to each washout facility to inform concrete equipment operators to use the proper facilities. When temporary concrete washout facilities are no longer required for the work, the hardened concrete shall be removed and disposed of. Materials used to construct the temporary concrete washout facilities shall be removed and disposed of. Holes, depressions or other ground disturbance caused by the removal of the temporary concrete washout facilities shall be backfilled or repaired, seeded, and mulched for final stabilization. Wastewater discharges from washout of concrete is prohibited.
- 9. Non-stormwater components of site discharge shall be clean water. Water used for construction, which discharges from the site, must originate from a public water supply or approved private well. Water used for construction that does not originate from an approved public supply must not discharge from the site.
- 10. Discharges from dewatering activities, including discharges from dewatering trenches and excavations, shall be managed by appropriate control measures.
- 11. Wastewater discharges from washout and cleanout of stucco, paint, form-release oils, curing compounds, and other construction materials is prohibited.

5.4 Soil Stabilization and Restoration

Stabilization

In areas where soil disturbance has temporarily or permanently ceased, the application of soil stabilization measures shall be initiated by the end of the next business day and completed within 14 days from the date the current soil disturbance ceased. The soil-stabilization measures shall be in conformance with the *New York State Standards and Specifications for Erosion and Sediment Control*, latest edition.

Restoration

Soil restoration shall be performed in the disturbed areas. The soils shall be restored in accordance with the table below.

Type of Soil Disturbance	Soil Restoration Requirement
No Soil Disturbance	Restoration not required.
(e.g., preservation of natural features)	
Minimal Soil Disturbance	Restoration not required.
(e.g., clearing and grubbing)	
Areas where top soil is stripped only	Aerate and apply 6 inches of topsoil.
(e.g., no change in grade)	
Areas of cut or fill	Apply full soil restoration (see below).
Heavy traffic areas on site	Apply full soil restoration (see below).

Table 5-1: Soil Restoration

(especially in 5 to 25 feet around	
buildings, but not within a 5-foot	
perimeter around foundation walls)	
Areas where runoff reduction or	Restoration not required, but can be applied to
infiltration practices are applied	enhance soil infiltration.
Redevelopment projects	Soil restoration is required on redevelopment
	projects in areas where existing impervious area
	will be converted to pervious area.

Full Soil Restoration

Before applying full soil restoration, all construction, including construction equipment and material storage, site cleanup and trafficking, should be finished and the site closed to further disturbance. Full soil restoration should be performed with a heavy-duty agricultural-grade deep ripper, deep angled-leg subsoiler, or equivalent machinery to achieve de-compaction.

Full soil restoration is implemented in a two-phase process:

- 1. Deep rip the affected thickness of exposed subsoil, aggressively fracturing it before the protected topsoil is reapplied on the site.
- 2. De-compact simultaneously through the restored topsoil layer and upper half of the affected subsoil.

Low to Moderate Subsoil Moisture

The disturbed soils are returned to rough grade and the following is applied:

- 1. Apply 3 inches of compost over the subsoil.
- 2. Till compost a minimum of 12 inches into the subsoil using a cat-mounted ripper, tractormounted disc, or tiller mixing and circulating air and compost into subsoils.
- 3. Rock-pick until uplifted stone and rock of 4 inches or larger size are cleaned off the site. All construction material and foreign debris and existing root masses shall be removed from proposed planting areas.
- 4. Apply 6 inches of topsoil. Newly installed planting soils shall be mixed with existing soils where they meet in order to create a transitional gradient to allow for proper drainage.
- 5. Install plants and vegetation in accordance with the Landscaping Plan.

6 Stormwater Pollution Prevention Plan Implementation

6.1 Certification Statements

Before starting construction, the owner/operator, contractors, and subcontractors are required to sign the certification statements provided in <u>Appendix C</u>.

The owner/operator must sign a copy of the Owner's/Operator's certification before submitting the Notice of Intent. The owner/operator acknowledges that the SWPPP has been developed and will be implemented as the first element of construction and agrees to comply with the terms and conditions of the general permit for which the Notice of Intent is being submitted.

The owner/operator must identify the contractors and subcontractors that will be responsible for installing, constructing, repairing, replacing, inspecting, and maintaining the erosion and sediment control practices; and constructing the post-construction stormwater management practices included in the SWPPP. The contractors and subcontractors must identify at least one trained individual from their company who will be responsible for implementation of the SWPPP. This person will be known as the trained contractor. At least one trained contractor will be on site daily when soil disturbing activities are being performed. If new or additional contractors are hired to implement measures identified in the SWPPP after construction has begun, they must also sign the certification statement and identify their responsibilities.

6.2 **Pre-Construction Meeting**

Before beginning construction, the owner/operator must set up a pre-construction meeting with the Town representative, qualified professional, qualified inspector, contractors, and subcontractors. The primary purpose of the pre-construction meeting is to discuss the responsibilities of each party as they relate to the implementation of the SWPPP and to clarify any questions.

6.3 Construction Site Log

The owner/operator must maintain a copy of the following, including but not limited to: General Permit, signed NOI, signed MS4 Acceptance form, NOI Acknowledgement Letter, SWPPP, signed certification statements, and inspections reports. The documents must be maintained in a secure location on site. The secure location must be accessible during normal business hours to an individual performing a compliance inspection.

6.4 Construction Inspections and Maintenance

6.4.1 Contractor Maintenance Inspection Requirements

The trained contractor must inspect the erosion and sediment control practices and pollutionprevention measures to verify that they are being maintained in effective operating condition. The inspections will be conducted as follows:

- For construction sites where soil disturbance is on-going, the trained contractor must inspect the measures within the active work area daily. If deficiencies are identified, the contractor will begin implementing corrective actions within one business day and must complete the corrective actions by the end of the day.
- For construction sites where soil disturbance activities have been temporarily suspended (e.g., winter shutdown) and temporary stabilization measures have been applied to all disturbed areas, the trained contractor can stop conducting the maintenance inspections. The trained contractor must conduct the daily maintenance inspections as soil disturbance resumes.
- For construction sites where soil disturbance has been shut down with partial project completion, the trained contractor can stop conducting the maintenance inspections if all areas disturbed as of the project shutdown date have achieved final stabilization and all

post-construction stormwater management practices required for the completed part of the project have been constructed in conformance with the SWPPP and are operational.

6.4.2 Qualified Inspector Inspection Requirements

The owner/operator must have a Qualified Inspector conduct site inspections to verify the stability and effectiveness of protective measures and practices employed during construction. The site inspections will be conducted as follows:

- For construction sites where soil disturbance is ongoing, the Qualified Inspector must conduct a site inspection at least once every seven days.
- For construction sites where soil disturbance activities have been temporarily suspended (e.g., winter shutdown) and temporary stabilization measures have been applied to all disturbed areas, the Qualified Inspector must conduct a site inspection at least once every 30 days. The owner/operator must notify the NYSDEC or MS4 in writing before reducing the frequency of the inspections.
- For construction sites where soil disturbance activities have been shut down with partial project completion, the Qualified Inspector can stop conducting inspections if all areas disturbed as of the project shutdown date have achieved final stabilization and all postconstruction stormwater management practices are operational. The owner/operator must notify the NYSDEC or the MS4 in writing before the shutdown.

All erosion and sediment control inspections shall be performed in accordance with this SWPPP, accompanying project plans, latest revision of *New York State Standards and Specifications for Erosion and Sediment Control*, and procedures outlined in Appendix H of the latest revision of the *New York State Stormwater Management Design Manual*. Inspection reports must identify and document the maintenance of the erosion and sediment control measures. An example inspection report has been provided in <u>Appendix D</u>.

Specific maintenance components, schedule frequency, inspection parameters and remediation procedures are provided on the accompanying project plans. Any adjustments or modifications to the maintenance plan shall be noted in the inspection reports and submitted to the Town for approval.

7 Termination of Coverage

The owner/operator may terminate coverage when:

- a. Total project completion has occurred.
- b. A planned shutdown with partial project completion has occurred.
- c. Property ownership changes or when there is a change in operational control over the construction plans and specifications; and the new owner/operator has obtained coverage under the SPDES General Permit.
- d. Coverage under an alternative SPDES general permit or an individual SPDES permit has been obtained.

The completed NOT must be submitted to the NYSDEC to cancel coverage. A blank copy of the NOT has been provided in <u>Appendix B</u>.

8 Post-Construction Requirements

8.1 Record Retention

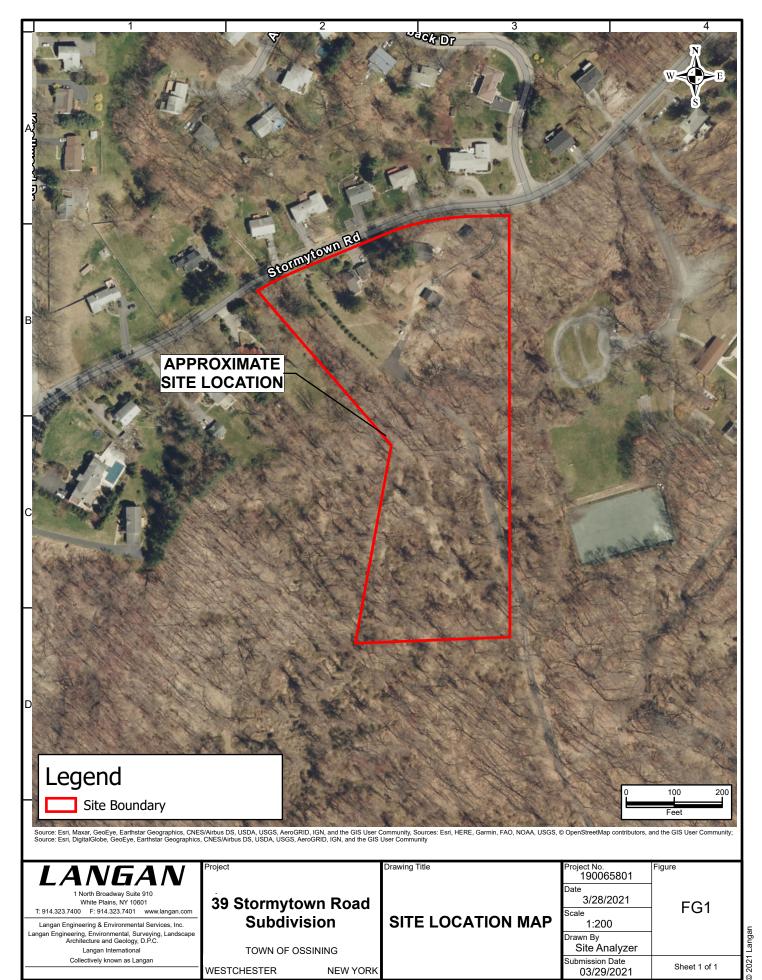
Following construction, the owner/operator must retain a copy of the signed NOI, signed MS4 SWPPP Acceptance, NOI Acknowledgement Letter, SWPPP, project plans, and any inspection reports that were prepared in conjunction with the General Permit for at least five years from the date that the NYSDEC receives a complete NOT.

8.2 Inspection and Maintenance

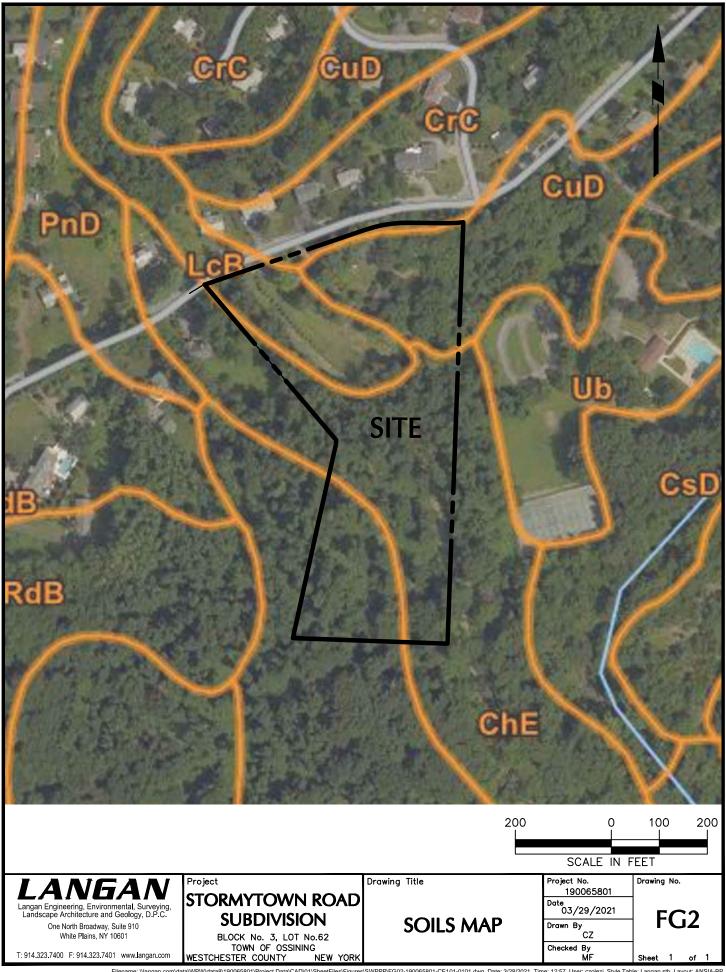
Post-construction inspections and maintenance will be performed by homeowner's association. Inspections and maintenance for the various site components and stormwater management facilities shall be performed in accordance with the accompanying project plans and this SWPPP. Detailed post-construction inspections and maintenance procedures are provided in <u>Appendix H</u>.

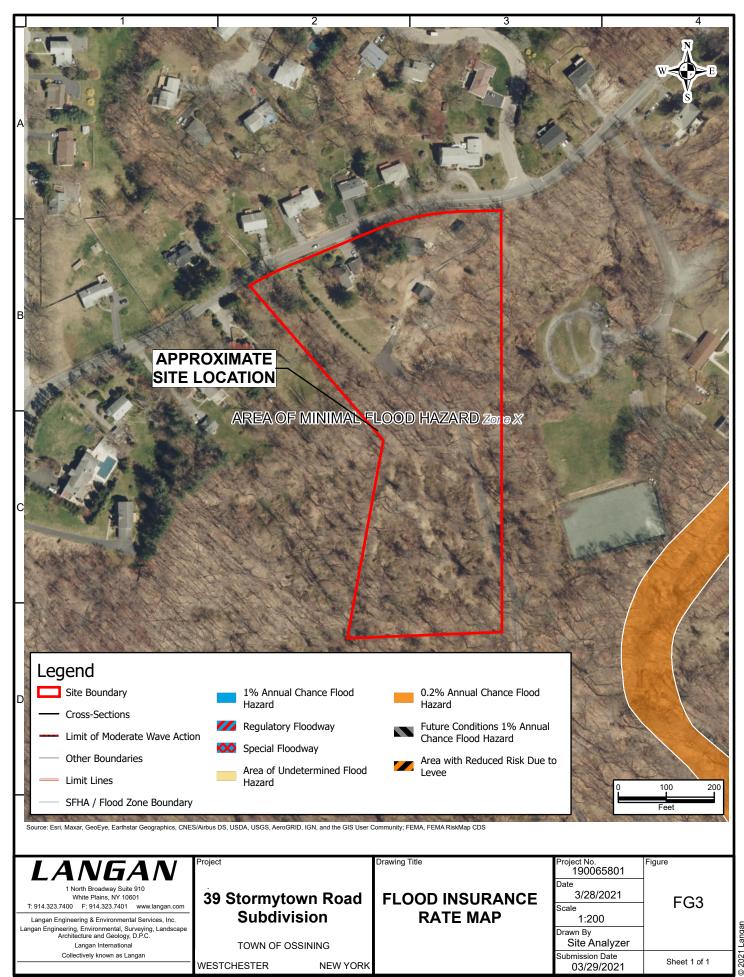
9 Conclusion

This Stormwater Pollution Prevention Plan has been developed in accordance with the requirements of the Town of Ossining and the New York State Department of Environmental Conservation (NYSDEC) State Pollutant Discharge Elimination System (SPDES) Phase II technical guidelines. This SWPPP identifies the erosion control, sediment control, pollution-prevention, and stormwater management measures to be implemented during construction to minimize soil erosion and control sediment transport off site, and after construction to control and treat stormwater runoff from the developed site.

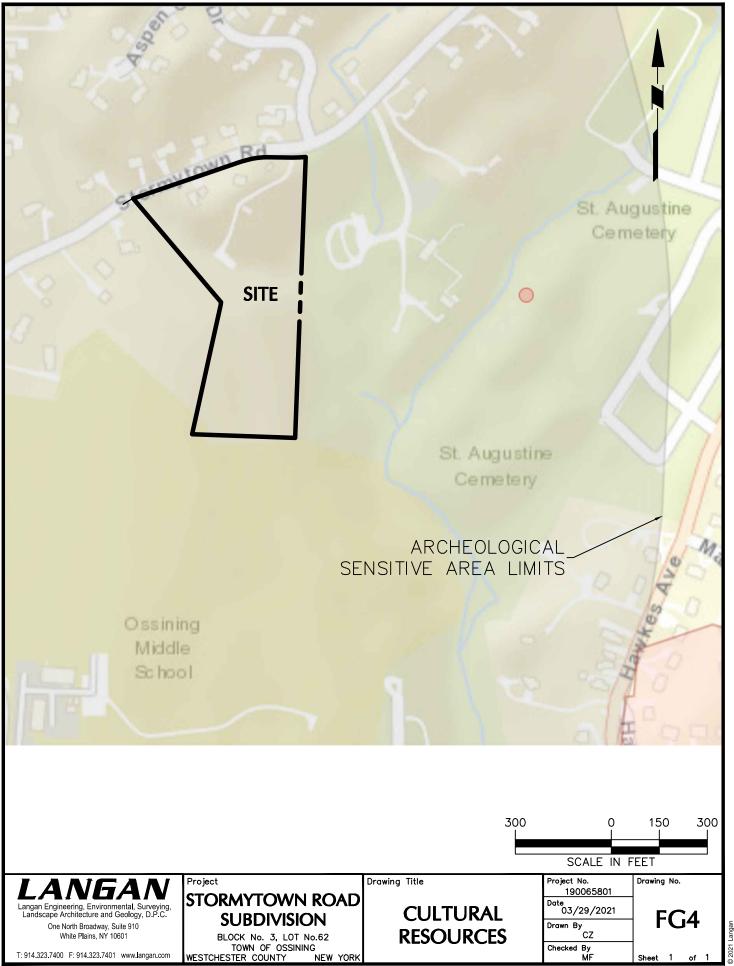

In the opinion of the SWPPP preparer, the proposed project will not have adverse impacts if the measures for erosion control, sediment control, pollution prevention, and stormwater management measures are properly constructed and maintained in accordance with the requirements outlined herein and on the accompanying project plans.

\\angan.com\data\\WPW\data8\190065801\Project Data_Discipline\Site Civil\Reports\2021-04-28 SWPPP\2021-04-28 SWPPP.docx

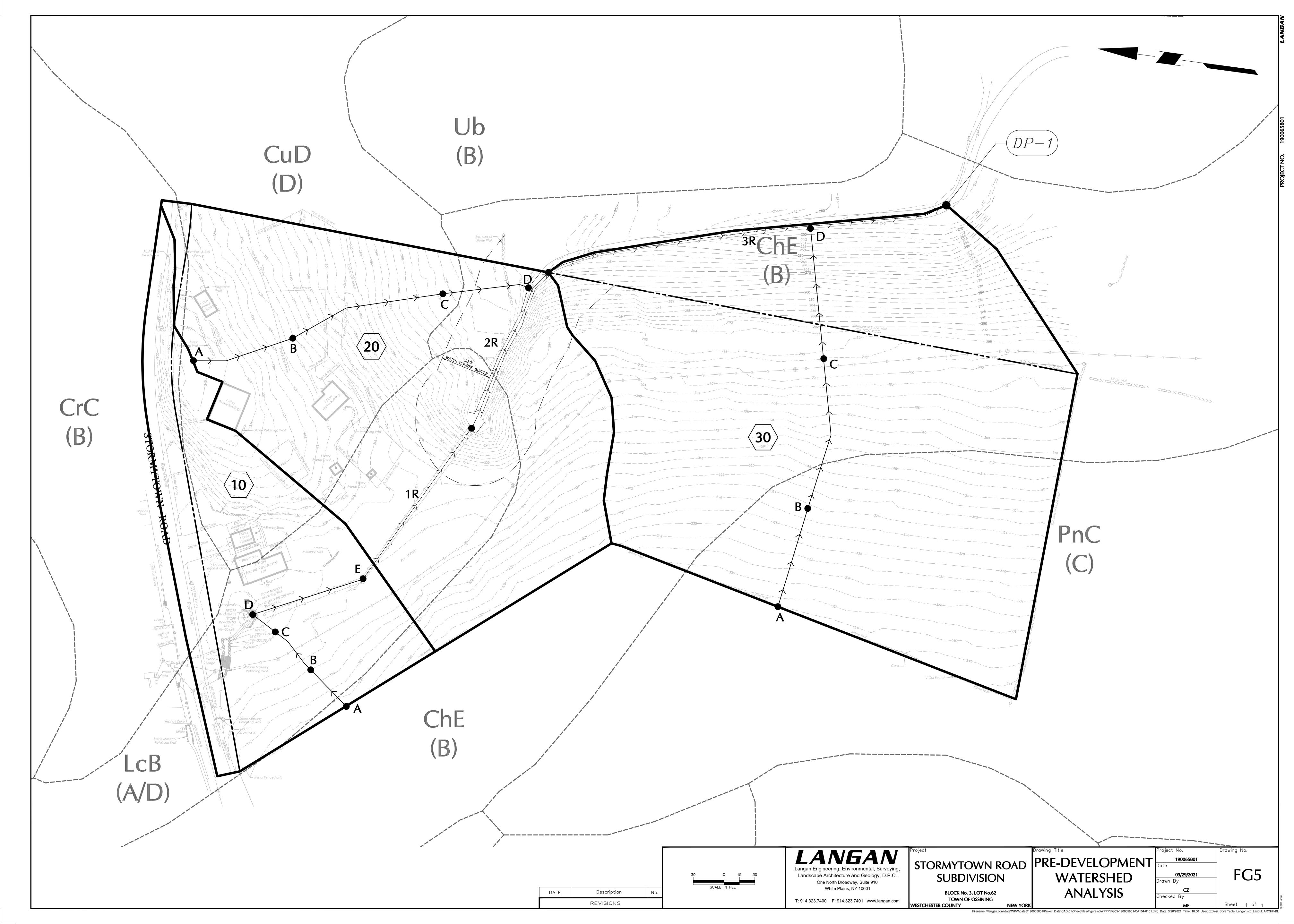

Stormytown Road Subdivision 39 Stormytown Road Town of Ossining, New York

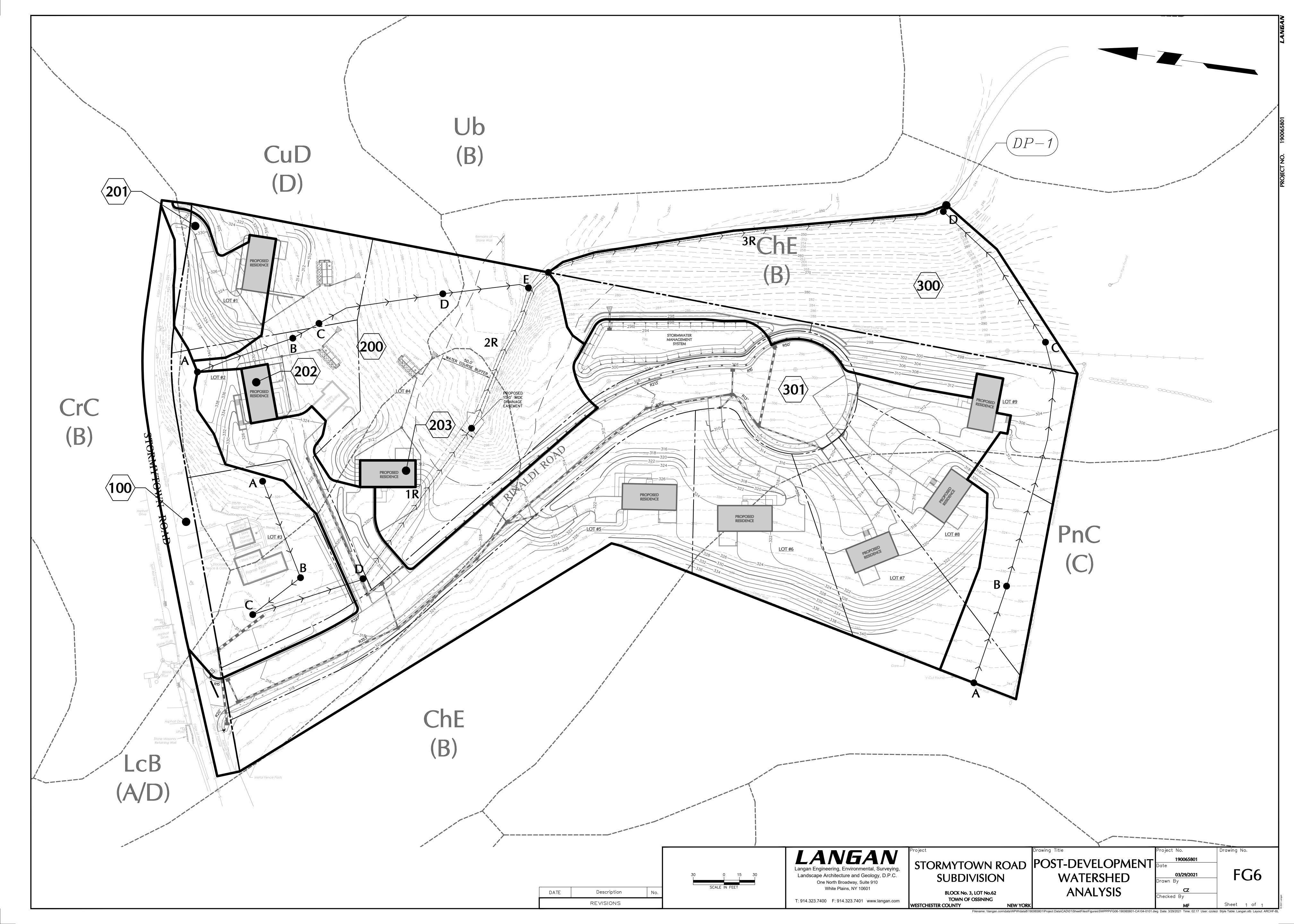

Figures

LANGAN



Disclaimer: This information is produced by an automated system and may not be complete. The absence of a feature is not a confirmation that the feature is not present at the subject location. Information produced is in the public domain and unless noted has not been field verified or provided for any specific use. Users are also cautioned to confirm the information shown is suitable for their intended use. Spatial Reference: NAD 1983 StatePlane New York East FIPS 3101 Feet Warning: It is a violation of the NYS Education Law Article 145 for any person, unless acting under the direction of a licensed professional engineer, land surveyor or geologist, to alter this item in any way.





Disclaimer: This information is produced by an automated system and may not be complete. The absence of a feature is not a confirmation that the feature is not present at the subject location. Information produced is in the public domain and unless noted has not been field verified or provided for any specific use. Users are also cautioned to confirm the information shown is suitable for their intended use. Spatial Reference: NAD 1983 StatePlane New York East FIPS 3101 Feet Warning: It is a violation of the NYS Education Law Article 145 for any person, unless acting under the direction of a licensed professional engineer, land surveyor or geologist, to alter this item in any way.

Filename: \\langan.com\data\\VPW\data8\190065801\Project Data\CAD\01\SheetFiles\Figures\SWPPPFG04-190065801-CS101-0101.dwg Date: 3/28/2021 Time: 13:22 User: czolezi Style Table: Langan.stb Layout: ANSIA-BP

Appendix A: NYSDEC SPDES General Permit

LANGAN

Department of Environmental Conservation

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SPDES GENERAL PERMIT FOR STORMWATER DISCHARGES

From

CONSTRUCTION ACTIVITY

Permit No. GP- 0-20-001

Issued Pursuant to Article 17, Titles 7, 8 and Article 70

of the Environmental Conservation Law

Effective Date: January 29, 2020

Expiration Date: January 28, 2025

John J. Ferguson

Chief Permit Administrator

Authorized Signature

1-23-20

Date

Address: NYS DEC Division of Environmental Permits 625 Broadway, 4th Floor Albany, N.Y. 12233-1750

PREFACE

Pursuant to Section 402 of the Clean Water Act ("CWA"), stormwater *discharges* from certain *construction activities* are unlawful unless they are authorized by a *National Pollutant Discharge Elimination System ("NPDES")* permit or by a state permit program. New York administers the approved State Pollutant Discharge Elimination System (SPDES) program with permits issued in accordance with the New York State Environmental Conservation Law (ECL) Article 17, Titles 7, 8 and Article 70.

An owner or operator of a construction activity that is eligible for coverage under this permit must obtain coverage prior to the *commencement of construction activity*. Activities that fit the definition of "*construction activity*", as defined under 40 CFR 122.26(b)(14)(x), (15)(i), and (15)(ii), constitute construction of a *point source* and therefore, pursuant to ECL section 17-0505 and 17-0701, the *owner or operator* must have coverage under a SPDES permit prior to *commencing construction activity*. The *owner or operator* cannot wait until there is an actual *discharge* from the *construction site* to obtain permit coverage.

*Note: The italicized words/phrases within this permit are defined in Appendix A.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SPDES GENERAL PERMIT FOR STORMWATER DISCHARGES FROM CONSTRUCTION ACTIVITIES

Table of Contents

Part 1. F	PERMIT COVERAGE AND LIMITATIONS	1
Α.	Permit Application	1
В.	Effluent Limitations Applicable to Discharges from Construction Activities	1
C.	Post-construction Stormwater Management Practice Requirements	4
D.	Maintaining Water Quality	
Ε.	Eligibility Under This General Permit	
F.	Activities Which Are Ineligible for Coverage Under This General Permit	9
Part II. F	PERMIT COVERAGE	12
Α.	How to Obtain Coverage	12
В.	Notice of Intent (NOI) Submittal	13
C.	Permit Authorization	
D.	General Requirements For Owners or Operators With Permit Coverage	15
Ε.	Permit Coverage for Discharges Authorized Under GP-0-15-002	17
F.	Change of Owner or Operator	17
Part III.	STORMWATER POLLUTION PREVENTION PLAN (SWPPP)	18
Α.	General SWPPP Requirements	18
В.	Required SWPPP Contents	20
C.	Required SWPPP Components by Project Type	
Part IV.	INSPECTION AND MAINTENANCE REQUIREMENTS	24
Α.	General Construction Site Inspection and Maintenance Requirements	24
В.	Contractor Maintenance Inspection Requirements	
C.	Qualified Inspector Inspection Requirements	
Part V.	TERMINATION OF PERMIT COVERAGE	29
Α.	Termination of Permit Coverage	29
Part VI.	REPORTING AND RETENTION RECORDS	31
Α.	Record Retention	31
В.	Addresses	
Part VII.	. STANDARD PERMIT CONDITIONS	
Α.	Duty to Comply	
В.	Continuation of the Expired General Permit	32
C.	Enforcement	
D.	Need to Halt or Reduce Activity Not a Defense	
Ε.	Duty to Mitigate	33
F.	Duty to Provide Information	
G.	Other Information	
Н.	Signatory Requirements	
I.	Property Rights	
J.	Severability	35

K.	Requirement to Obtain Coverage Under an Alternative Permit	35
L.	Proper Operation and Maintenance	36
М.	Inspection and Entry	36
N.	Permit Actions	37
О.	Definitions	37
Ρ.	Re-Opener Clause	37
Q.	Penalties for Falsification of Forms and Reports	37
R.	Other Permits	38
APPEN	DIX A – Acronyms and Definitions	39
Acror	nyms	39
Defin	itions	40
APPEN	DIX B – Required SWPPP Components by Project Type	48
Table	e 1	48
Table	9 2	50
APPEN	DIX C – Watersheds Requiring Enhanced Phosphorus Removal	52
APPEN	DIX D – Watersheds with Lower Disturbance Threshold	58
APPEN	DIX E – 303(d) Segments Impaired by Construction Related Pollutant(s)	59
APPEN	DIX F – List of NYS DEC Regional Offices	65

Part 1. PERMIT COVERAGE AND LIMITATIONS

A. Permit Application

This permit authorizes stormwater *discharges* to *surface waters of the State* from the following *construction activities* identified within 40 CFR Parts 122.26(b)(14)(x), 122.26(b)(15)(i) and 122.26(b)(15)(ii), provided all of the eligibility provisions of this permit are met:

- 1. Construction activities involving soil disturbances of one (1) or more acres; including disturbances of less than one acre that are part of a *larger common plan of development or sale* that will ultimately disturb one or more acres of land; excluding *routine maintenance activity* that is performed to maintain the original line and grade, hydraulic capacity or original purpose of a facility;
- 2. Construction activities involving soil disturbances of less than one (1) acre where the Department has determined that a *SPDES* permit is required for stormwater *discharges* based on the potential for contribution to a violation of a *water quality standard* or for significant contribution of *pollutants* to *surface waters of the State.*
- Construction activities located in the watershed(s) identified in Appendix D that involve soil disturbances between five thousand (5,000) square feet and one (1) acre of land.

B. Effluent Limitations Applicable to Discharges from Construction Activities

Discharges authorized by this permit must achieve, at a minimum, the effluent limitations in Part I.B.1. (a) – (f) of this permit. These limitations represent the degree of effluent reduction attainable by the application of best practicable technology currently available.

 Erosion and Sediment Control Requirements - The owner or operator must select, design, install, implement and maintain control measures to minimize the discharge of pollutants and prevent a violation of the water quality standards. The selection, design, installation, implementation, and maintenance of these control measures must meet the non-numeric effluent limitations in Part I.B.1.(a) – (f) of this permit and be in accordance with the New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016, using sound engineering judgment. Where control measures are not designed in conformance with the design criteria included in the technical standard, the owner or operator must include in the Stormwater Pollution Prevention Plan ("SWPPP") the reason(s) for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the technical standard.

- a. **Erosion and Sediment Controls.** Design, install and maintain effective erosion and sediment controls to *minimize* the *discharge* of *pollutants* and prevent a violation of the *water quality standards*. At a minimum, such controls must be designed, installed and maintained to:
 - (i) *Minimize* soil erosion through application of runoff control and soil stabilization control measure to *minimize pollutant discharges*;
 - (ii) Control stormwater *discharges*, including both peak flowrates and total stormwater volume, to *minimize* channel and *streambank* erosion and scour in the immediate vicinity of the *discharge* points;
 - (iii) *Minimize* the amount of soil exposed during *construction activity*;
 - (iv) *Minimize* the disturbance of *steep slopes*;
 - (v) *Minimize* sediment *discharges* from the site;
 - (vi) Provide and maintain *natural buffers* around surface waters, direct stormwater to vegetated areas and maximize stormwater infiltration to reduce *pollutant discharges*, unless *infeasible*;
 - (vii) Minimize soil compaction. Minimizing soil compaction is not required where the intended function of a specific area of the site dictates that it be compacted;
 - (viii) Unless *infeasible*, preserve a sufficient amount of topsoil to complete soil restoration and establish a uniform, dense vegetative cover; and
 - (ix) *Minimize* dust. On areas of exposed soil, *minimize* dust through the appropriate application of water or other dust suppression techniques to control the generation of pollutants that could be discharged from the site.
- b. Soil Stabilization. In areas where soil disturbance activity has temporarily or permanently ceased, the application of soil stabilization measures must be initiated by the end of the next business day and completed within fourteen (14) days from the date the current soil disturbance activity ceased. For construction sites that *directly discharge* to one of the 303(d) segments

listed in Appendix E or is located in one of the watersheds listed in Appendix C, the application of soil stabilization measures must be initiated by the end of the next business day and completed within seven (7) days from the date the current soil disturbance activity ceased. See Appendix A for definition of *Temporarily Ceased*.

- c. **Dewatering**. *Discharges* from *dewatering* activities, including *discharges* from *dewatering* of trenches and excavations, must be managed by appropriate control measures.
- d. **Pollution Prevention Measures**. Design, install, implement, and maintain effective pollution prevention measures to *minimize* the *discharge* of *pollutants* and prevent a violation of the *water quality standards*. At a minimum, such measures must be designed, installed, implemented and maintained to:
 - (i) Minimize the discharge of pollutants from equipment and vehicle washing, wheel wash water, and other wash waters. This applies to washing operations that use clean water only. Soaps, detergents and solvents cannot be used;
 - (ii) Minimize the exposure of building materials, building products, construction wastes, trash, landscape materials, fertilizers, pesticides, herbicides, detergents, sanitary waste, hazardous and toxic waste, and other materials present on the site to precipitation and to stormwater. Minimization of exposure is not required in cases where the exposure to precipitation and to stormwater will not result in a *discharge* of *pollutants*, or where exposure of a specific material or product poses little risk of stormwater contamination (such as final products and materials intended for outdoor use); and
 - (iii) Prevent the *discharge* of *pollutants* from spills and leaks and implement chemical spill and leak prevention and response procedures.
- e. Prohibited Discharges. The following discharges are prohibited:
 - (i) Wastewater from washout of concrete;
 - (ii) Wastewater from washout and cleanout of stucco, paint, form release oils, curing compounds and other construction materials;

- (iii) Fuels, oils, or other *pollutants* used in vehicle and equipment operation and maintenance;
- (iv) Soaps or solvents used in vehicle and equipment washing; and
- (v) Toxic or hazardous substances from a spill or other release.
- f. Surface Outlets. When discharging from basins and impoundments, the outlets shall be designed, constructed and maintained in such a manner that sediment does not leave the basin or impoundment and that erosion at or below the outlet does not occur.

C. Post-construction Stormwater Management Practice Requirements

- The owner or operator of a construction activity that requires post-construction stormwater management practices pursuant to Part III.C. of this permit must select, design, install, and maintain the practices to meet the *performance criteria* in the New York State Stormwater Management Design Manual ("Design Manual"), dated January 2015, using sound engineering judgment. Where post-construction stormwater management practices ("SMPs") are not designed in conformance with the *performance criteria* in the Design Manual, the owner or operator must include in the SWPPP the reason(s) for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the technical standard.
- 2. The owner or operator of a construction activity that requires post-construction stormwater management practices pursuant to Part III.C. of this permit must design the practices to meet the applicable *sizing criteria* in Part I.C.2.a., b., c. or d. of this permit.

a. Sizing Criteria for New Development

- (i) Runoff Reduction Volume ("RRv"): Reduce the total Water Quality Volume ("WQv") by application of RR techniques and standard SMPs with RRv capacity. The total WQv shall be calculated in accordance with the criteria in Section 4.2 of the Design Manual.
- (ii) Minimum RRv and Treatment of Remaining Total WQv: Construction activities that cannot meet the criteria in Part I.C.2.a.(i) of this permit due to site limitations shall direct runoff from all newly constructed impervious areas to a RR technique or standard SMP with RRv capacity unless infeasible. The specific site limitations that prevent the reduction of 100% of the WQv shall be documented in the SWPPP.

For each impervious area that is not directed to a RR technique or standard SMP with RRv capacity, the SWPPP must include documentation which demonstrates that all options were considered and for each option explains why it is considered infeasible.

In no case shall the runoff reduction achieved from the newly constructed impervious areas be less than the Minimum RRv as calculated using the criteria in Section 4.3 of the Design Manual. The remaining portion of the total WQv that cannot be reduced shall be treated by application of standard SMPs.

- (iii) Channel Protection Volume ("Cpv"): Provide 24 hour extended detention of the post-developed 1-year, 24-hour storm event; remaining after runoff reduction. The Cpv requirement does not apply when:
 - (1) Reduction of the entire Cpv is achieved by application of runoff reduction techniques or infiltration systems, or
 - (2) The site discharges directly to tidal waters, or fifth order or larger streams.
- (iv) Overbank Flood Control Criteria ("Qp"): Requires storage to attenuate the post-development 10-year, 24-hour peak discharge rate (Qp) to predevelopment rates. The Qp requirement does not apply when:
 - (1) the site discharges directly to tidal waters or fifth order or larger streams, or
 - (2) A downstream analysis reveals that *overbank* control is not required.
- (v) Extreme Flood Control Criteria ("Qf"): Requires storage to attenuate the post-development 100-year, 24-hour peak discharge rate (Qf) to predevelopment rates. The Qf requirement does not apply when:
 - (1) the site discharges directly to tidal waters or fifth order or larger streams, or
 - (2) A downstream analysis reveals that *overbank* control is not required.

b. *Sizing Criteria* for *New Development* in Enhanced Phosphorus Removal Watershed

Runoff Reduction Volume (RRv): Reduce the total Water Quality
 Volume (WQv) by application of RR techniques and standard SMPs
 with RRv capacity. The total WQv is the runoff volume from the 1-year,
 24 hour design storm over the post-developed watershed and shall be

calculated in accordance with the criteria in Section 10.3 of the Design Manual.

(ii) Minimum RRv and Treatment of Remaining Total WQv: Construction activities that cannot meet the criteria in Part I.C.2.b.(i) of this permit due to site limitations shall direct runoff from all newly constructed impervious areas to a RR technique or standard SMP with RRv capacity unless infeasible. The specific site limitations that prevent the reduction of 100% of the WQv shall be documented in the SWPPP. For each impervious area that is not directed to a RR technique or standard SMP with RRv capacity, the SWPPP must include documentation which demonstrates that all options were considered and for each option explains why it is considered infeasible.

In no case shall the runoff reduction achieved from the newly constructed *impervious areas* be less than the Minimum RRv as calculated using the criteria in Section 10.3 of the Design Manual. The remaining portion of the total WQv that cannot be reduced shall be treated by application of standard SMPs.

- (iii) Channel Protection Volume (Cpv): Provide 24 hour extended detention of the post-developed 1-year, 24-hour storm event; remaining after runoff reduction. The Cpv requirement does not apply when:
 - (1) Reduction of the entire Cpv is achieved by application of runoff reduction techniques or infiltration systems, or
 - (2) The site *discharge*s directly to tidal waters, or fifth order or larger streams.
- (iv) Overbank Flood Control Criteria (Qp): Requires storage to attenuate the post-development 10-year, 24-hour peak discharge rate (Qp) to predevelopment rates. The Qp requirement does not apply when:
 - (1) the site *discharges* directly to tidal waters or fifth order or larger streams, or
 - (2) A downstream analysis reveals that *overbank* control is not required.
- (v) Extreme Flood Control Criteria (Qf): Requires storage to attenuate the post-development 100-year, 24-hour peak *discharge* rate (Qf) to predevelopment rates. The Qf requirement does not apply when:
 - (1) the site *discharges* directly to tidal waters or fifth order or larger streams, or
 - (2) A downstream analysis reveals that *overbank* control is not required.

c. Sizing Criteria for Redevelopment Activity

- (i) Water Quality Volume (WQv): The WQv treatment objective for redevelopment activity shall be addressed by one of the following options. Redevelopment activities located in an Enhanced Phosphorus Removal Watershed (see Part III.B.3. and Appendix C of this permit) shall calculate the WQv in accordance with Section 10.3 of the Design Manual. All other redevelopment activities shall calculate the WQv in accordance with Section 4.2 of the Design Manual.
 - (1) Reduce the existing *impervious cover* by a minimum of 25% of the total disturbed, *impervious area*. The Soil Restoration criteria in Section 5.1.6 of the Design Manual must be applied to all newly created pervious areas, or
 - (2) Capture and treat a minimum of 25% of the WQv from the disturbed, impervious area by the application of standard SMPs; or reduce 25% of the WQv from the disturbed, impervious area by the application of RR techniques or standard SMPs with RRv capacity., or
 - (3) Capture and treat a minimum of 75% of the WQv from the disturbed, *impervious area* as well as any additional runoff from tributary areas by application of the alternative practices discussed in Sections 9.3 and 9.4 of the Design Manual., or
 - (4) Application of a combination of 1, 2 and 3 above that provide a weighted average of at least two of the above methods. Application of this method shall be in accordance with the criteria in Section 9.2.1(B) (IV) of the Design Manual.

If there is an existing post-construction stormwater management practice located on the site that captures and treats runoff from the *impervious area* that is being disturbed, the WQv treatment option selected must, at a minimum, provide treatment equal to the treatment that was being provided by the existing practice(s) if that treatment is greater than the treatment required by options 1 - 4 above.

- (ii) Channel Protection Volume (Cpv): Not required if there are no changes to hydrology that increase the *discharge* rate from the project site.
- (iii) Overbank Flood Control Criteria (Qp): Not required if there are no changes to hydrology that increase the *discharge* rate from the project site.
- (iv) Extreme Flood Control Criteria (Qf): Not required if there are no changes to hydrology that increase the *discharge* rate from the project site

d. Sizing Criteria for Combination of Redevelopment Activity and New Development

Construction projects that include both New Development and Redevelopment Activity shall provide post-construction stormwater management controls that meet the sizing criteria calculated as an aggregate of the Sizing Criteria in Part I.C.2.a. or b. of this permit for the New Development portion of the project and Part I.C.2.c of this permit for Redevelopment Activity portion of the project.

D. Maintaining Water Quality

The Department expects that compliance with the conditions of this permit will control *discharges* necessary to meet applicable *water quality standards*. It shall be a violation of the *ECL* for any discharge to either cause or contribute to a violation of *water quality standards* as contained in Parts 700 through 705 of Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York, such as:

- 1. There shall be no increase in turbidity that will cause a substantial visible contrast to natural conditions;
- 2. There shall be no increase in suspended, colloidal or settleable solids that will cause deposition or impair the waters for their best usages; and
- 3. There shall be no residue from oil and floating substances, nor visible oil film, nor globules of grease.

If there is evidence indicating that the stormwater *discharges* authorized by this permit are causing, have the reasonable potential to cause, or are contributing to a violation of the *water quality standards*; the *owner or operator* must take appropriate corrective action in accordance with Part IV.C.5. of this general permit and document in accordance with Part IV.C.4. of this general permit. To address the *water quality standard* violation the *owner or operator* may need to provide additional information, include and implement appropriate controls in the SWPPP to correct the problem, or obtain an individual SPDES permit.

If there is evidence indicating that despite compliance with the terms and conditions of this general permit it is demonstrated that the stormwater *discharges* authorized by this permit are causing or contributing to a violation of *water quality standards*, or if the Department determines that a modification of the permit is necessary to prevent a violation of *water quality standards*, the authorized *discharges* will no longer be eligible for coverage under this permit. The Department may require the *owner or operator* to obtain an individual SPDES permit to continue discharging.

E. Eligibility Under This General Permit

- 1. This permit may authorize all *discharges* of stormwater from *construction activity* to *surface waters of the State* and *groundwaters* except for ineligible *discharges* identified under subparagraph F. of this Part.
- 2. Except for non-stormwater *discharges* explicitly listed in the next paragraph, this permit only authorizes stormwater *discharges*; including stormwater runoff, snowmelt runoff, and surface runoff and drainage, from *construction activities*.
- 3. Notwithstanding paragraphs E.1 and E.2 above, the following non-stormwater discharges are authorized by this permit: those listed in 6 NYCRR 750-1.2(a)(29)(vi), with the following exception: "Discharges from firefighting activities are authorized only when the firefighting activities are emergencies/unplanned"; waters to which other components have not been added that are used to control dust in accordance with the SWPPP; and uncontaminated *discharges* from *construction site* de-watering operations. All non-stormwater discharges must be identified in the SWPPP. Under all circumstances, the *owner or operator* must still comply with *water quality standards* in Part I.D of this permit.
- 4. The *owner or operator* must maintain permit eligibility to *discharge* under this permit. Any *discharges* that are not compliant with the eligibility conditions of this permit are not authorized by the permit and the *owner or operator* must either apply for a separate permit to cover those ineligible *discharges* or take steps necessary to make the *discharge* eligible for coverage.

F. Activities Which Are Ineligible for Coverage Under This General Permit

All of the following are **<u>not</u>** authorized by this permit:

- 1. *Discharges* after *construction activities* have been completed and the site has undergone *final stabilization*;
- Discharges that are mixed with sources of non-stormwater other than those expressly authorized under subsection E.3. of this Part and identified in the SWPPP required by this permit;
- 3. *Discharges* that are required to obtain an individual SPDES permit or another SPDES general permit pursuant to Part VII.K. of this permit;
- 4. Construction activities or discharges from construction activities that may adversely affect an endangered or threatened species unless the owner or

operator has obtained a permit issued pursuant to 6 NYCRR Part 182 for the project or the Department has issued a letter of non-jurisdiction for the project. All documentation necessary to demonstrate eligibility shall be maintained on site in accordance with Part II.D.2 of this permit;

- 5. *Discharges* which either cause or contribute to a violation of *water quality standards* adopted pursuant to the *ECL* and its accompanying regulations;
- 6. Construction activities for residential, commercial and institutional projects:
 - a. Where the *discharges* from the *construction activities* are tributary to waters of the state classified as AA or AA-s; and
 - b. Which are undertaken on land with no existing *impervious cover*, and
 - c. Which disturb one (1) or more acres of land designated on the current United States Department of Agriculture ("USDA") Soil Survey as Soil Slope Phase "D", (provided the map unit name is inclusive of slopes greater than 25%), or Soil Slope Phase "E" or "F" (regardless of the map unit name), or a combination of the three designations.
- 7. *Construction activities* for linear transportation projects and linear utility projects:
 - a. Where the *discharges* from the *construction activities* are tributary to waters of the state classified as AA or AA-s; and
 - b. Which are undertaken on land with no existing impervious cover, and

c. Which disturb two (2) or more acres of land designated on the current USDA Soil Survey as Soil Slope Phase "D" (provided the map unit name is inclusive of slopes greater than 25%), or Soil Slope Phase "E" or "F" (regardless of the map unit name), or a combination of the three designations.

- 8. Construction activities that have the potential to affect an *historic property*, unless there is documentation that such impacts have been resolved. The following documentation necessary to demonstrate eligibility with this requirement shall be maintained on site in accordance with Part II.D.2 of this permit and made available to the Department in accordance with Part VII.F of this permit:
 - a. Documentation that the *construction activity* is not within an archeologically sensitive area indicated on the sensitivity map, and that the *construction activity* is not located on or immediately adjacent to a property listed or determined to be eligible for listing on the National or State Registers of Historic Places, and that there is no new permanent building on the *construction site* within the following distances from a building, structure, or object that is more than 50 years old, or if there is such a new permanent building on the *construction site* within those parameters that NYS Office of Parks, Recreation and Historic Preservation (OPRHP), a Historic Preservation Commission of a Certified Local Government, or a qualified preservation professional has determined that the building, structure, or object more than 50 years old is not historically/archeologically significant.
 - 1-5 acres of disturbance 20 feet
 - 5-20 acres of disturbance 50 feet
 - 20+ acres of disturbance 100 feet, or
 - b. DEC consultation form sent to OPRHP, and copied to the NYS DEC Agency Historic Preservation Officer (APO), and
 - the State Environmental Quality Review (SEQR) Environmental Assessment Form (EAF) with a negative declaration or the Findings Statement, with documentation of OPRHP's agreement with the resolution; or
 - (ii) documentation from OPRHP that the *construction activity* will result in No Impact; or
 - (iii) documentation from OPRHP providing a determination of No Adverse Impact; or
 - (iv) a Letter of Resolution signed by the owner/operator, OPRHP and the DEC APO which allows for this *construction activity* to be eligible for coverage under the general permit in terms of the State Historic Preservation Act (SHPA); or
 - c. Documentation of satisfactory compliance with Section 106 of the National Historic Preservation Act for a coterminous project area:

- (i) No Affect
- (ii) No Adverse Affect
- (iii) Executed Memorandum of Agreement, or
- d. Documentation that:
- (i) SHPA Section 14.09 has been completed by NYS DEC or another state agency.
- 9. *Discharges* from *construction activities* that are subject to an existing SPDES individual or general permit where a SPDES permit for *construction activity* has been terminated or denied; or where the *owner or operator* has failed to renew an expired individual permit.

Part II. PERMIT COVERAGE

A. How to Obtain Coverage

- An owner or operator of a construction activity that is not subject to the requirements of a regulated, traditional land use control MS4 must first prepare a SWPPP in accordance with all applicable requirements of this permit and then submit a completed Notice of Intent (NOI) to the Department to be authorized to discharge under this permit.
- 2. An owner or operator of a construction activity that is subject to the requirements of a regulated, traditional land use control MS4 must first prepare a SWPPP in accordance with all applicable requirements of this permit and then have the SWPPP reviewed and accepted by the regulated, traditional land use control MS4 prior to submitting the NOI to the Department. The owner or operator shall have the "MS4 SWPPP Acceptance" form signed in accordance with Part VII.H., and then submit that form along with a completed NOI to the Department.
- 3. The requirement for an *owner or operator* to have its SWPPP reviewed and accepted by the *regulated, traditional land use control MS4* prior to submitting the NOI to the Department does not apply to an *owner or operator* that is obtaining permit coverage in accordance with the requirements in Part II.F. (Change of *Owner or Operator*) or where the *owner or operator* of the *construction activity* is the *regulated, traditional land use control MS4*. This exemption does not apply to *construction activities* subject to the New York City Administrative Code.

B. Notice of Intent (NOI) Submittal

 Prior to December 21, 2020, an owner or operator shall use either the electronic (eNOI) or paper version of the NOI that the Department prepared. Both versions of the NOI are located on the Department's website (http://www.dec.ny.gov/). The paper version of the NOI shall be signed in accordance with Part VII.H. of this permit and submitted to the following address:

NOTICE OF INTENT NYS DEC, Bureau of Water Permits 625 Broadway, 4th Floor Albany, New York 12233-3505

- 2. Beginning December 21, 2020 and in accordance with EPA's 2015 NPDES Electronic Reporting Rule (40 CFR Part 127), the *owner or operator* must submit the NOI electronically using the *Department's* online NOI.
- 3. The *owner or operator* shall have the SWPPP preparer sign the "SWPPP Preparer Certification" statement on the NOI prior to submitting the form to the Department.
- 4. As of the date the NOI is submitted to the Department, the *owner or operator* shall make the NOI and SWPPP available for review and copying in accordance with the requirements in Part VII.F. of this permit.

C. Permit Authorization

- 1. An owner or operator shall not commence construction activity until their authorization to discharge under this permit goes into effect.
- 2. Authorization to *discharge* under this permit will be effective when the *owner or operator* has satisfied <u>all</u> of the following criteria:
 - a. project review pursuant to the State Environmental Quality Review Act ("SEQRA") have been satisfied, when SEQRA is applicable. See the Department's website (<u>http://www.dec.ny.gov/</u>) for more information,
 - b. where required, all necessary Department permits subject to the Uniform Procedures Act ("UPA") (see 6 NYCRR Part 621), or the equivalent from another New York State agency, have been obtained, unless otherwise notified by the Department pursuant to 6 NYCRR 621.3(a)(4). Owners or operators of construction activities that are required to obtain UPA permits

must submit a preliminary SWPPP to the appropriate DEC Permit Administrator at the Regional Office listed in Appendix F at the time all other necessary UPA permit applications are submitted. The preliminary SWPPP must include sufficient information to demonstrate that the *construction activity* qualifies for authorization under this permit,

- c. the final SWPPP has been prepared, and
- d. a complete NOI has been submitted to the Department in accordance with the requirements of this permit.
- 3. An owner or operator that has satisfied the requirements of Part II.C.2 above will be authorized to *discharge* stormwater from their *construction activity* in accordance with the following schedule:
 - a. For construction activities that are <u>not</u> subject to the requirements of a *regulated, traditional land use control MS4*:
 - (i) Five (5) business days from the date the Department receives a complete electronic version of the NOI (eNOI) for *construction activities* with a SWPPP that has been prepared in conformance with the design criteria in the technical standard referenced in Part III.B.1 and the *performance criteria* in the technical standard referenced in Parts III.B., 2 or 3, for *construction activities* that require post-construction stormwater management practices pursuant to Part III.C.; or
 - (ii) Sixty (60) business days from the date the Department receives a complete NOI (electronic or paper version) for *construction activities* with a SWPPP that has <u>not</u> been prepared in conformance with the design criteria in technical standard referenced in Part III.B.1. or, for *construction activities* that require post-construction stormwater management practices pursuant to Part III.C., the *performance criteria* in the technical standard referenced in Parts III.B., 2 or 3, or;
 - (iii) Ten (10) business days from the date the Department receives a complete paper version of the NOI for *construction activities* with a SWPPP that has been prepared in conformance with the design criteria in the technical standard referenced in Part III.B.1 and the *performance criteria* in the technical standard referenced in Parts III.B., 2 or 3, for *construction activities* that require post-construction stormwater management practices pursuant to Part III.C.

- b. For *construction activities* that are subject to the requirements of a *regulated, traditional land use control MS4*:
 - Five (5) business days from the date the Department receives both a complete electronic version of the NOI (eNOI) and signed "MS4 SWPPP Acceptance" form, or
 - (ii) Ten (10) business days from the date the Department receives both a complete paper version of the NOI and signed "MS4 SWPPP Acceptance" form.
- 4. Coverage under this permit authorizes stormwater *discharges* from only those areas of disturbance that are identified in the NOI. If an *owner or operator* wishes to have stormwater *discharges* from future or additional areas of disturbance authorized, they must submit a new NOI that addresses that phase of the development, unless otherwise notified by the Department. The *owner or operator* shall not *commence construction activity* on the future or additional areas until their authorization to *discharge* under this permit goes into effect in accordance with Part II.C. of this permit.

D. General Requirements For Owners or Operators With Permit Coverage

- The owner or operator shall ensure that the provisions of the SWPPP are implemented from the commencement of construction activity until all areas of disturbance have achieved *final stabilization* and the Notice of Termination ("NOT") has been submitted to the Department in accordance with Part V. of this permit. This includes any changes made to the SWPPP pursuant to Part III.A.4. of this permit.
- 2. The owner or operator shall maintain a copy of the General Permit (GP-0-20-001), NOI, NOI Acknowledgment Letter, SWPPP, MS4 SWPPP Acceptance form, inspection reports, responsible contractor's or subcontractor's certification statement (see Part III.A.6.), and all documentation necessary to demonstrate eligibility with this permit at the construction site until all disturbed areas have achieved final stabilization and the NOT has been submitted to the Department. The documents must be maintained in a secure location, such as a job trailer, on-site construction office, or mailbox with lock. The secure location must be accessible during normal business hours to an individual performing a compliance inspection.
- 3. The owner or operator of a construction activity shall not disturb greater than five (5) acres of soil at any one time without prior written authorization from the Department or, in areas under the jurisdiction of a *regulated, traditional land*

use control MS4, the regulated, traditional land use control MS4 (provided the regulated, traditional land use control MS4 is not the owner or operator of the construction activity). At a minimum, the owner or operator must comply with the following requirements in order to be authorized to disturb greater than five (5) acres of soil at any one time:

- a. The owner or operator shall have a qualified inspector conduct at least two (2) site inspections in accordance with Part IV.C. of this permit every seven (7) calendar days, for as long as greater than five (5) acres of soil remain disturbed. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
- b. In areas where soil disturbance activity has temporarily or permanently ceased, the application of soil stabilization measures must be initiated by the end of the next business day and completed within seven (7) days from the date the current soil disturbance activity ceased. The soil stabilization measures selected shall be in conformance with the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016.
- c. The *owner or operator* shall prepare a phasing plan that defines maximum disturbed area per phase and shows required cuts and fills.
- d. The *owner or operator* shall install any additional site-specific practices needed to protect water quality.
- e. The *owner or operator* shall include the requirements above in their SWPPP.
- 4. In accordance with statute, regulations, and the terms and conditions of this permit, the Department may suspend or revoke an *owner's or operator's* coverage under this permit at any time if the Department determines that the SWPPP does not meet the permit requirements or consistent with Part VII.K..
- 5. Upon a finding of significant non-compliance with the practices described in the SWPPP or violation of this permit, the Department may order an immediate stop to all activity at the site until the non-compliance is remedied. The stop work order shall be in writing, describe the non-compliance in detail, and be sent to the *owner or operator*.
- 6. For construction activities that are subject to the requirements of a regulated, traditional land use control MS4, the owner or operator shall notify the

regulated, traditional land use control MS4 in writing of any planned amendments or modifications to the post-construction stormwater management practice component of the SWPPP required by Part III.A. 4. and 5. of this permit. Unless otherwise notified by the *regulated, traditional land use control MS4*, the owner or operator shall have the SWPPP amendments or modifications reviewed and accepted by the *regulated, traditional land use control MS4* prior to commencing construction of the post-construction stormwater management practice.

E. Permit Coverage for Discharges Authorized Under GP-0-15-002

 Upon renewal of SPDES General Permit for Stormwater Discharges from Construction Activity (Permit No. GP-0-15-002), an owner or operator of a construction activity with coverage under GP-0-15-002, as of the effective date of GP- 0-20-001, shall be authorized to discharge in accordance with GP- 0-20-001, unless otherwise notified by the Department.

An *owner or operator* may continue to implement the technical/design components of the post-construction stormwater management controls provided that such design was done in conformance with the technical standards in place at the time of initial project authorization. However, they must comply with the other, non-design provisions of GP-0-20-001.

F. Change of Owner or Operator

- When property ownership changes or when there is a change in operational control over the construction plans and specifications, the original owner or operator must notify the new owner or operator, in writing, of the requirement to obtain permit coverage by submitting a NOI with the Department. For construction activities subject to the requirements of a regulated, traditional land use control MS4, the original owner or operator must also notify the MS4, in writing, of the change in ownership at least 30 calendar days prior to the change in ownership.
- 2. Once the new *owner or operator* obtains permit coverage, the original *owner or operator* shall then submit a completed NOT with the name and permit identification number of the new *owner or operator* to the Department at the address in Part II.B.1. of this permit. If the original *owner or operator* maintains ownership of a portion of the *construction activity* and will disturb soil, they must maintain their coverage under the permit.
- 3. Permit coverage for the new *owner or operator* will be effective as of the date the Department receives a complete NOI, provided the original *owner or*

operator was not subject to a sixty (60) business day authorization period that has not expired as of the date the Department receives the NOI from the new owner or operator.

Part III. STORMWATER POLLUTION PREVENTION PLAN (SWPPP)

A. General SWPPP Requirements

- 1. A SWPPP shall be prepared and implemented by the owner or operator of each construction activity covered by this permit. The SWPPP must document the selection, design, installation, implementation and maintenance of the control measures and practices that will be used to meet the effluent limitations in Part I.B. of this permit and where applicable, the post-construction stormwater management practice requirements in Part I.C. of this permit. The SWPPP shall be prepared prior to the submittal of the NOI. The NOI shall be submitted to the Department prior to the commencement of construction activity. A copy of the completed, final NOI shall be included in the SWPPP.
- 2. The SWPPP shall describe the erosion and sediment control practices and where required, post-construction stormwater management practices that will be used and/or constructed to reduce the *pollutants* in stormwater *discharges* and to assure compliance with the terms and conditions of this permit. In addition, the SWPPP shall identify potential sources of pollution which may reasonably be expected to affect the quality of stormwater *discharges*.
- 3. All SWPPPs that require the post-construction stormwater management practice component shall be prepared by a *qualified professional* that is knowledgeable in the principles and practices of stormwater management and treatment.
- 4. The *owner or operator* must keep the SWPPP current so that it at all times accurately documents the erosion and sediment controls practices that are being used or will be used during construction, and all post-construction stormwater management practices that will be constructed on the site. At a minimum, the *owner or operator* shall amend the SWPPP, including construction drawings:
 - a. whenever the current provisions prove to be ineffective in minimizing *pollutants* in stormwater *discharges* from the site;

- b. whenever there is a change in design, construction, or operation at the *construction site* that has or could have an effect on the *discharge* of *pollutants*;
- c. to address issues or deficiencies identified during an inspection by the *qualified inspector,* the Department or other regulatory authority; and
- d. to document the final construction conditions.
- 5. The Department may notify the *owner or operator* at any time that the SWPPP does not meet one or more of the minimum requirements of this permit. The notification shall be in writing and identify the provisions of the SWPPP that require modification. Within fourteen (14) calendar days of such notification, or as otherwise indicated by the Department, the *owner or operator* shall make the required changes to the SWPPP and submit written notification to the Department that the changes have been made. If the *owner or operator* does not respond to the Department's comments in the specified time frame, the Department may suspend the *owner's or operator's* coverage under this permit or require the *owner or operator* to obtain coverage under an individual SPDES permit in accordance with Part II.D.4. of this permit.
- 6. Prior to the commencement of construction activity, the owner or operator must identify the contractor(s) and subcontractor(s) that will be responsible for installing, constructing, repairing, replacing, inspecting and maintaining the erosion and sediment control practices included in the SWPPP; and the contractor(s) and subcontractor(s) that will be responsible for constructing the post-construction stormwater management practices included in the SWPPP. The owner or operator shall have each of the contractors and subcontractors identify at least one person from their company that will be responsible for implementation of the SWPPP. This person shall be known as the *trained contractor*. The owner or operator shall ensure that at least one *trained contractor* is on site on a daily basis when soil disturbance activities are being performed.

The *owner or operator* shall have each of the contractors and subcontractors identified above sign a copy of the following certification statement below before they commence any *construction activity*:

"I hereby certify under penalty of law that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the *qualified inspector* during a site inspection. I also understand that the *owner or operator* must comply with

(Part III.A.6)

the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater *discharges* from *construction activities* and that it is unlawful for any person to cause or contribute to a violation of *water quality standards*. Furthermore, I am aware that there are significant penalties for submitting false information, that I do not believe to be true, including the possibility of fine and imprisonment for knowing violations"

In addition to providing the certification statement above, the certification page must also identify the specific elements of the SWPPP that each contractor and subcontractor will be responsible for and include the name and title of the person providing the signature; the name and title of the *trained contractor* responsible for SWPPP implementation; the name, address and telephone number of the contracting firm; the address (or other identifying description) of the site; and the date the certification statement is signed. The *owner or operator* shall attach the certification statement(s) to the copy of the SWPPP that is maintained at the *construction site*. If new or additional contractors are hired to implement measures identified in the SWPPP after construction has commenced, they must also sign the certification statement and provide the information listed above.

7. For projects where the Department requests a copy of the SWPPP or inspection reports, the *owner or operator* shall submit the documents in both electronic (PDF only) and paper format within five (5) business days, unless otherwise notified by the Department.

B. Required SWPPP Contents

- 1. Erosion and sediment control component All SWPPPs prepared pursuant to this permit shall include erosion and sediment control practices designed in conformance with the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016. Where erosion and sediment control practices are not designed in conformance with the design criteria included in the technical standard, the *owner or operator* must demonstrate *equivalence* to the technical standard. At a minimum, the erosion and sediment control component of the SWPPP shall include the following:
 - a. Background information about the scope of the project, including the location, type and size of project

- b. A site map/construction drawing(s) for the project, including a general location map. At a minimum, the site map shall show the total site area; all improvements; areas of disturbance; areas that will not be disturbed; existing vegetation; on-site and adjacent off-site surface water(s); floodplain/floodway boundaries; wetlands and drainage patterns that could be affected by the *construction activity*; existing and final contours; locations of different soil types with boundaries; material, waste, borrow or equipment storage areas located on adjacent properties; and location(s) of the stormwater *discharge*(s);
- c. A description of the soil(s) present at the site, including an identification of the Hydrologic Soil Group (HSG);
- d. A construction phasing plan and sequence of operations describing the intended order of *construction activities*, including clearing and grubbing, excavation and grading, utility and infrastructure installation and any other activity at the site that results in soil disturbance;
- e. A description of the minimum erosion and sediment control practices to be installed or implemented for each *construction activity* that will result in soil disturbance. Include a schedule that identifies the timing of initial placement or implementation of each erosion and sediment control practice and the minimum time frames that each practice should remain in place or be implemented;
- f. A temporary and permanent soil stabilization plan that meets the requirements of this general permit and the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016, for each stage of the project, including initial land clearing and grubbing to project completion and achievement of *final stabilization*;
- g. A site map/construction drawing(s) showing the specific location(s), size(s), and length(s) of each erosion and sediment control practice;
- h. The dimensions, material specifications, installation details, and operation and maintenance requirements for all erosion and sediment control practices. Include the location and sizing of any temporary sediment basins and structural practices that will be used to divert flows from exposed soils;
- i. A maintenance inspection schedule for the contractor(s) identified in Part III.A.6. of this permit, to ensure continuous and effective operation of the erosion and sediment control practices. The maintenance inspection

schedule shall be in accordance with the requirements in the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016;

- j. A description of the pollution prevention measures that will be used to control litter, construction chemicals and construction debris from becoming a *pollutant* source in the stormwater *discharges*;
- k. A description and location of any stormwater *discharges* associated with industrial activity other than construction at the site, including, but not limited to, stormwater *discharges* from asphalt plants and concrete plants located on the *construction site*; and
- I. Identification of any elements of the design that are not in conformance with the design criteria in the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016. Include the reason for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the technical standard.
- Post-construction stormwater management practice component The owner or operator of any construction project identified in Table 2 of Appendix B as needing post-construction stormwater management practices shall prepare a SWPPP that includes practices designed in conformance with the applicable sizing criteria in Part I.C.2.a., c. or d. of this permit and the performance criteria in the technical standard, New York State Stormwater Management Design Manual dated January 2015

Where post-construction stormwater management practices are not designed in conformance with the *performance criteria* in the technical standard, the *owner or operator* must include in the SWPPP the reason(s) for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the technical standard.

The post-construction stormwater management practice component of the SWPPP shall include the following:

 a. Identification of all post-construction stormwater management practices to be constructed as part of the project. Include the dimensions, material specifications and installation details for each post-construction stormwater management practice;

- b. A site map/construction drawing(s) showing the specific location and size of each post-construction stormwater management practice;
- c. A Stormwater Modeling and Analysis Report that includes:
 - Map(s) showing pre-development conditions, including watershed/subcatchments boundaries, flow paths/routing, and design points;
 - Map(s) showing post-development conditions, including watershed/subcatchments boundaries, flow paths/routing, design points and post-construction stormwater management practices;
 - (iii) Results of stormwater modeling (i.e. hydrology and hydraulic analysis) for the required storm events. Include supporting calculations (model runs), methodology, and a summary table that compares pre and postdevelopment runoff rates and volumes for the different storm events;
 - (iv) Summary table, with supporting calculations, which demonstrates that each post-construction stormwater management practice has been designed in conformance with the *sizing criteria* included in the Design Manual;
 - (v) Identification of any *sizing criteria* that is not required based on the requirements included in Part I.C. of this permit; and
 - (vi) Identification of any elements of the design that are not in conformance with the *performance criteria* in the Design Manual. Include the reason(s) for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the Design Manual;
- d. Soil testing results and locations (test pits, borings);
- e. Infiltration test results, when required; and
- f. An operations and maintenance plan that includes inspection and maintenance schedules and actions to ensure continuous and effective operation of each post-construction stormwater management practice. The plan shall identify the entity that will be responsible for the long term operation and maintenance of each practice.

3. Enhanced Phosphorus Removal Standards - All construction projects identified in Table 2 of Appendix B that are located in the watersheds identified in Appendix C shall prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the applicable *sizing criteria* in Part I.C.2. b., c. or d. of this permit and the *performance criteria*, Enhanced Phosphorus Removal Standards included in the Design Manual. At a minimum, the post-construction stormwater management practice component of the SWPPP shall include items 2.a - 2.f. above.

C. Required SWPPP Components by Project Type

Unless otherwise notified by the Department, *owners or operators* of *construction activities* identified in Table 1 of Appendix B are required to prepare a SWPPP that only includes erosion and sediment control practices designed in conformance with Part III.B.1 of this permit. *Owners or operators* of the *construction activities* identified in Table 2 of Appendix B shall prepare a SWPPP that also includes post-construction stormwater management practices designed in conformance with Part III.B.2 or 3 of this permit.

Part IV. INSPECTION AND MAINTENANCE REQUIREMENTS

A. General Construction Site Inspection and Maintenance Requirements

- 1. The *owner or operator* must ensure that all erosion and sediment control practices (including pollution prevention measures) and all post-construction stormwater management practices identified in the SWPPP are inspected and maintained in accordance with Part IV.B. and C. of this permit.
- 2. The terms of this permit shall not be construed to prohibit the State of New York from exercising any authority pursuant to the ECL, common law or federal law, or prohibit New York State from taking any measures, whether civil or criminal, to prevent violations of the laws of the State of New York or protect the public health and safety and/or the environment.

B. Contractor Maintenance Inspection Requirements

1. The owner or operator of each construction activity identified in Tables 1 and 2 of Appendix B shall have a *trained contractor* inspect the erosion and sediment control practices and pollution prevention measures being implemented within the active work area daily to ensure that they are being maintained in effective operating condition at all times. If deficiencies are identified, the contractor shall

begin implementing corrective actions within one business day and shall complete the corrective actions in a reasonable time frame.

- 2. For construction sites where soil disturbance activities have been temporarily suspended (e.g. winter shutdown) and *temporary stabilization* measures have been applied to all disturbed areas, the *trained contractor* can stop conducting the maintenance inspections. The *trained contractor* shall begin conducting the maintenance inspections in accordance with Part IV.B.1. of this permit as soon as soil disturbance activities resume.
- 3. For construction sites where soil disturbance activities have been shut down with partial project completion, the *trained contractor* can stop conducting the maintenance inspections if all areas disturbed as of the project shutdown date have achieved *final stabilization* and all post-construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational.

C. Qualified Inspector Inspection Requirements

The owner or operator shall have a *qualified inspector* conduct site inspections in conformance with the following requirements:

[Note: The *trained contractor* identified in Part III.A.6. and IV.B. of this permit **cannot** conduct the *qualified inspector* site inspections unless they meet the *qualified inspector* qualifications included in Appendix A. In order to perform these inspections, the *trained contractor* would have to be a:

- licensed Professional Engineer,
- Certified Professional in Erosion and Sediment Control (CPESC),
- New York State Erosion and Sediment Control Certificate Program holder
- Registered Landscape Architect, or
- someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity].
- 1. A *qualified inspector* shall conduct site inspections for all *construction activities* identified in Tables 1 and 2 of Appendix B, <u>with the exception of</u>:
 - a. the construction of a single family residential subdivision with 25% or less *impervious cover* at total site build-out that involves a soil disturbance of one (1) or more acres of land but less than five (5) acres and is <u>not</u> located

in one of the watersheds listed in Appendix C and <u>not</u> directly discharging to one of the 303(d) segments listed in Appendix E;

- b. the construction of a single family home that involves a soil disturbance of one (1) or more acres of land but less than five (5) acres and is <u>not</u> located in one of the watersheds listed in Appendix C and <u>not</u> directly discharging to one of the 303(d) segments listed in Appendix E;
- c. construction on agricultural property that involves a soil disturbance of one
 (1) or more acres of land but less than five (5) acres; and
- d. *construction activities* located in the watersheds identified in Appendix D that involve soil disturbances between five thousand (5,000) square feet and one (1) acre of land.
- 2. Unless otherwise notified by the Department, the *qualified inspector* shall conduct site inspections in accordance with the following timetable:
 - a. For construction sites where soil disturbance activities are on-going, the *qualified inspector* shall conduct a site inspection at least once every seven (7) calendar days.
 - b. For construction sites where soil disturbance activities are on-going and the owner or operator has received authorization in accordance with Part II.D.3 to disturb greater than five (5) acres of soil at any one time, the *qualified inspector* shall conduct at least two (2) site inspections every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
 - c. For construction sites where soil disturbance activities have been temporarily suspended (e.g. winter shutdown) and *temporary stabilization* measures have been applied to all disturbed areas, the *qualified inspector* shall conduct a site inspection at least once every thirty (30) calendar days. The *owner or operator* shall notify the DOW Water (SPDES) Program contact at the Regional Office (see contact information in Appendix F) or, in areas under the jurisdiction of a *regulated, traditional land use control MS4*, the *regulated, traditional land use control MS4* (provided the *regulated, traditional land use control MS4* is not the *owner or operator* of the *construction activity*) in writing prior to reducing the frequency of inspections.

- d. For construction sites where soil disturbance activities have been shut down with partial project completion, the *qualified inspector* can stop conducting inspections if all areas disturbed as of the project shutdown date have achieved final stabilization and all post-construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational. The owner or operator shall notify the DOW Water (SPDES) Program contact at the Regional Office (see contact information in Appendix F) or, in areas under the jurisdiction of a regulated, traditional land use control MS4, the regulated, traditional land use control MS4 (provided the regulated, traditional land use control MS4 is not the owner or operator of the construction activity) in writing prior to the shutdown. If soil disturbance activities are not resumed within 2 years from the date of shutdown, the owner or operator shall have the qualified inspector perform a final inspection and certify that all disturbed areas have achieved final stabilization, and all temporary, structural erosion and sediment control measures have been removed; and that all post-construction stormwater management practices have been constructed in conformance with the SWPPP by signing the "Final Stabilization" and "Post-Construction" Stormwater Management Practice" certification statements on the NOT. The owner or operator shall then submit the completed NOT form to the address in Part II.B.1 of this permit.
- e. For construction sites that directly *discharge* to one of the 303(d) segments listed in Appendix E or is located in one of the watersheds listed in Appendix C, the *qualified inspector* shall conduct at least two (2) site inspections every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
- 3. At a minimum, the *qualified inspector* shall inspect all erosion and sediment control practices and pollution prevention measures to ensure integrity and effectiveness, all post-construction stormwater management practices under construction to ensure that they are constructed in conformance with the SWPPP, all areas of disturbance that have not achieved *final stabilization,* all points of *discharge* to natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the *construction site*, and all points of *discharge* from the *construction site*.
- 4. The *qualified inspector* shall prepare an inspection report subsequent to each and every inspection. At a minimum, the inspection report shall include and/or address the following:

- a. Date and time of inspection;
- b. Name and title of person(s) performing inspection;
- c. A description of the weather and soil conditions (e.g. dry, wet, saturated) at the time of the inspection;
- d. A description of the condition of the runoff at all points of *discharge* from the *construction site*. This shall include identification of any *discharges* of sediment from the *construction site*. Include *discharges* from conveyance systems (i.e. pipes, culverts, ditches, etc.) and overland flow;
- e. A description of the condition of all natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the *construction site* which receive runoff from disturbed areas. This shall include identification of any *discharges* of sediment to the surface waterbody;
- f. Identification of all erosion and sediment control practices and pollution prevention measures that need repair or maintenance;
- Identification of all erosion and sediment control practices and pollution prevention measures that were not installed properly or are not functioning as designed and need to be reinstalled or replaced;
- Description and sketch of areas with active soil disturbance activity, areas that have been disturbed but are inactive at the time of the inspection, and areas that have been stabilized (temporary and/or final) since the last inspection;
- i. Current phase of construction of all post-construction stormwater management practices and identification of all construction that is not in conformance with the SWPPP and technical standards;
- j. Corrective action(s) that must be taken to install, repair, replace or maintain erosion and sediment control practices and pollution prevention measures; and to correct deficiencies identified with the construction of the postconstruction stormwater management practice(s);
- k. Identification and status of all corrective actions that were required by previous inspection; and

- I. Digital photographs, with date stamp, that clearly show the condition of all practices that have been identified as needing corrective actions. The *qualified inspector* shall attach paper color copies of the digital photographs to the inspection report being maintained onsite within seven (7) calendar days of the date of the inspection. The *qualified inspector* shall also take digital photographs, with date stamp, that clearly show the condition of the practice(s) after the corrective action has been completed. The *qualified inspector* shall attach paper color copies of the digital photographs to the inspection report that documents the completion of the corrective action work within seven (7) calendar days of that inspection.
- 5. Within one business day of the completion of an inspection, the *qualified inspector* shall notify the *owner or operator* and appropriate contractor or subcontractor identified in Part III.A.6. of this permit of any corrective actions that need to be taken. The contractor or subcontractor shall begin implementing the corrective actions within one business day of this notification and shall complete the corrective actions in a reasonable time frame.
- 6. All inspection reports shall be signed by the *qualified inspector*. Pursuant to Part II.D.2. of this permit, the inspection reports shall be maintained on site with the SWPPP.

Part V. TERMINATION OF PERMIT COVERAGE

A. Termination of Permit Coverage

- An owner or operator that is eligible to terminate coverage under this permit must submit a completed NOT form to the address in Part II.B.1 of this permit. The NOT form shall be one which is associated with this permit, signed in accordance with Part VII.H of this permit.
- 2. An *owner or operator* may terminate coverage when one or more the following conditions have been met:
 - a. Total project completion All *construction activity* identified in the SWPPP has been completed; <u>and</u> all areas of disturbance have achieved *final stabilization*; <u>and</u> all temporary, structural erosion and sediment control measures have been removed; <u>and</u> all post-construction stormwater management practices have been constructed in conformance with the SWPPP and are operational;

- b. Planned shutdown with partial project completion All soil disturbance activities have ceased; and all areas disturbed as of the project shutdown date have achieved *final stabilization*; and all temporary, structural erosion and sediment control measures have been removed; and all postconstruction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational;
- c. A new *owner or operator* has obtained coverage under this permit in accordance with Part II.F. of this permit.
- d. The *owner or operator* obtains coverage under an alternative SPDES general permit or an individual SPDES permit.
- 3. For *construction activities* meeting subdivision 2a. or 2b. of this Part, the *owner or operator* shall have the *qualified inspector* perform a final site inspection prior to submitting the NOT. The *qualified inspector* shall, by signing the "*Final Stabilization*" and "Post-Construction Stormwater Management Practice certification statements on the NOT, certify that all the requirements in Part V.A.2.a. or b. of this permit have been achieved.
- 4. For construction activities that are subject to the requirements of a regulated, traditional land use control MS4 and meet subdivision 2a. or 2b. of this Part, the owner or operator shall have the regulated, traditional land use control MS4 sign the "MS4 Acceptance" statement on the NOT in accordance with the requirements in Part VII.H. of this permit. The regulated, traditional land use control MS4 official, by signing this statement, has determined that it is acceptable for the owner or operator to submit the NOT in accordance with the requirements of this Part. The regulated, traditional land use control MS4 can make this determination by performing a final site inspection themselves or by accepting the qualified inspector's final site inspection certification(s) required in Part V.A.3. of this permit.
- 5. For *construction activities* that require post-construction stormwater management practices and meet subdivision 2a. of this Part, the *owner or operator* must, prior to submitting the NOT, ensure one of the following:
 - a. the post-construction stormwater management practice(s) and any right-ofway(s) needed to maintain such practice(s) have been deeded to the municipality in which the practice(s) is located,

- b. an executed maintenance agreement is in place with the municipality that will maintain the post-construction stormwater management practice(s),
- c. for post-construction stormwater management practices that are privately owned, the *owner or operator* has a mechanism in place that requires operation and maintenance of the practice(s) in accordance with the operation and maintenance plan, such as a deed covenant in the *owner or operator's* deed of record,
- d. for post-construction stormwater management practices that are owned by a public or private institution (e.g. school, university, hospital), government agency or authority, or public utility; the *owner or operator* has policy and procedures in place that ensures operation and maintenance of the practices in accordance with the operation and maintenance plan.

Part VI. REPORTING AND RETENTION RECORDS

A. Record Retention

The owner or operator shall retain a copy of the NOI, NOI

Acknowledgment Letter, SWPPP, MS4 SWPPP Acceptance form and any inspection reports that were prepared in conjunction with this permit for a period of at least five (5) years from the date that the Department receives a complete NOT submitted in accordance with Part V. of this general permit.

B. Addresses

With the exception of the NOI, NOT, and MS4 SWPPP Acceptance form (which must be submitted to the address referenced in Part II.B.1 of this permit), all written correspondence requested by the Department, including individual permit applications, shall be sent to the address of the appropriate DOW Water (SPDES) Program contact at the Regional Office listed in Appendix F.

Part VII. STANDARD PERMIT CONDITIONS

A. Duty to Comply

The *owner or operator* must comply with all conditions of this permit. All contractors and subcontractors associated with the project must comply with the terms of the SWPPP. Any non-compliance with this permit constitutes a violation of the Clean Water

(Part VII.A)

Act (CWA) and the ECL and is grounds for an enforcement action against the *owner or operator* and/or the contractor/subcontractor; permit revocation, suspension or modification; or denial of a permit renewal application. Upon a finding of significant non-compliance with this permit or the applicable SWPPP, the Department may order an immediate stop to all *construction activity* at the site until the non-compliance is remedied. The stop work order shall be in writing, shall describe the non-compliance in detail, and shall be sent to the *owner or operator*.

If any human remains or archaeological remains are encountered during excavation, the *owner or operator* must immediately cease, or cause to cease, all *construction activity* in the area of the remains and notify the appropriate Regional Water Engineer (RWE). *Construction activity* shall not resume until written permission to do so has been received from the RWE.

B. Continuation of the Expired General Permit

This permit expires five (5) years from the effective date. If a new general permit is not issued prior to the expiration of this general permit, an *owner or operator* with coverage under this permit may continue to operate and *discharge* in accordance with the terms and conditions of this general permit, if it is extended pursuant to the State Administrative Procedure Act and 6 NYCRR Part 621, until a new general permit is issued.

C. Enforcement

Failure of the *owner or operator,* its contractors, subcontractors, agents and/or assigns to strictly adhere to any of the permit requirements contained herein shall constitute a violation of this permit. There are substantial criminal, civil, and administrative penalties associated with violating the provisions of this permit. Fines of up to \$37,500 per day for each violation and imprisonment for up to fifteen (15) years may be assessed depending upon the nature and degree of the offense.

D. Need to Halt or Reduce Activity Not a Defense

It shall not be a defense for an *owner or operator* in an enforcement action that it would have been necessary to halt or reduce the *construction activity* in order to maintain compliance with the conditions of this permit.

E. Duty to Mitigate

The owner or operator and its contractors and subcontractors shall take all reasonable steps to *minimize* or prevent any *discharge* in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.

F. Duty to Provide Information

The owner or operator shall furnish to the Department, within a reasonable specified time period of a written request, all documentation necessary to demonstrate eligibility and any information to determine compliance with this permit or to determine whether cause exists for modifying or revoking this permit, or suspending or denying coverage under this permit, in accordance with the terms and conditions of this permit. The NOI, SWPPP and inspection reports required by this permit are public documents that the owner or operator must make available for review and copying by any person within five (5) business days of the owner or operator receiving a written request by any such person to review these documents. Copying of documents will be done at the requester's expense.

G. Other Information

When the *owner or operator* becomes aware that they failed to submit any relevant facts, or submitted incorrect information in the NOI or in any of the documents required by this permit, or have made substantive revisions to the SWPPP (e.g. the scope of the project changes significantly, the type of post-construction stormwater management practice(s) changes, there is a reduction in the sizing of the post-construction stormwater management practice, or there is an increase in the disturbance area or *impervious area*), which were not reflected in the original NOI submitted to the Department, they shall promptly submit such facts or information to the Department using the contact information in Part II.A. of this permit. Failure of the *owner or operator* to correct or supplement any relevant facts within five (5) business days of becoming aware of the deficiency shall constitute a violation of this permit.

H. Signatory Requirements

- 1. All NOIs and NOTs shall be signed as follows:
 - a. For a corporation these forms shall be signed by a responsible corporate officer. For the purpose of this section, a responsible corporate officer means:

- a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation; or
- (ii) the manager of one or more manufacturing, production or operating facilities, provided the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures;
- b. For a partnership or sole proprietorship these forms shall be signed by a general partner or the proprietor, respectively; or
- c. For a municipality, State, Federal, or other public agency these forms shall be signed by either a principal executive officer or ranking elected official. For purposes of this section, a principal executive officer of a Federal agency includes:
 - (i) the chief executive officer of the agency, or
 - (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrators of EPA).
- 2. The SWPPP and other information requested by the Department shall be signed by a person described in Part VII.H.1. of this permit or by a duly authorized representative of that person. A person is a duly authorized representative only if:
 - a. The authorization is made in writing by a person described in Part VII.H.1. of this permit;
 - b. The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity, such as the position of plant manager, operator of a well or a well field,

superintendent, position of *equivalent* responsibility, or an individual or position having overall responsibility for environmental matters for the company. (A duly authorized representative may thus be either a named individual or any individual occupying a named position) and,

- c. The written authorization shall include the name, title and signature of the authorized representative and be attached to the SWPPP.
- 3. All inspection reports shall be signed by the *qualified inspector* that performs the inspection.
- 4. The MS4 SWPPP Acceptance form shall be signed by the principal executive officer or ranking elected official from the *regulated, traditional land use control MS4,* or by a duly authorized representative of that person.

It shall constitute a permit violation if an incorrect and/or improper signatory authorizes any required forms, SWPPP and/or inspection reports.

I. Property Rights

The issuance of this permit does not convey any property rights of any sort, nor any exclusive privileges, nor does it authorize any injury to private property nor any invasion of personal rights, nor any infringement of Federal, State or local laws or regulations. *Owners or operators* must obtain any applicable conveyances, easements, licenses and/or access to real property prior to *commencing construction activity*.

J. Severability

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit shall not be affected thereby.

K. Requirement to Obtain Coverage Under an Alternative Permit

1. The Department may require any owner or operator authorized by this permit to apply for and/or obtain either an individual SPDES permit or another SPDES general permit. When the Department requires any discharger authorized by a general permit to apply for an individual SPDES permit, it shall notify the discharger in writing that a permit application is required. This notice shall

include a brief statement of the reasons for this decision, an application form, a statement setting a time frame for the owner or operator to file the application for an individual SPDES permit, and a deadline, not sooner than 180 days from owner or operator receipt of the notification letter, whereby the authorization to discharge under this general permit shall be terminated. Applications must be submitted to the appropriate Permit Administrator at the Regional Office. The Department may grant additional time upon demonstration, to the satisfaction of the Department, that additional time to apply for an alternative authorization is necessary or where the Department has not provided a permit determination in accordance with Part 621 of this Title.

2. When an individual SPDES permit is issued to a discharger authorized to *discharge* under a general SPDES permit for the same *discharge*(s), the general permit authorization for outfalls authorized under the individual SPDES permit is automatically terminated on the effective date of the individual permit unless termination is earlier in accordance with 6 NYCRR Part 750.

L. Proper Operation and Maintenance

The owner or operator shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the owner or operator to achieve compliance with the conditions of this permit and with the requirements of the SWPPP.

M. Inspection and Entry

The owner or operator shall allow an authorized representative of the Department, EPA, applicable county health department, or, in the case of a *construction site* which *discharges* through an *MS4*, an authorized representative of the *MS4* receiving the discharge, upon the presentation of credentials and other documents as may be required by law, to:

- 1. Enter upon the owner's or operator's premises where a regulated facility or activity is located or conducted or where records must be kept under the conditions of this permit;
- 2. Have access to and copy at reasonable times, any records that must be kept under the conditions of this permit; and

- 3. Inspect at reasonable times any facilities or equipment (including monitoring and control equipment), practices or operations regulated or required by this permit.
- 4. Sample or monitor at reasonable times, for purposes of assuring permit compliance or as otherwise authorized by the Act or ECL, any substances or parameters at any location.

N. Permit Actions

This permit may, at any time, be modified, suspended, revoked, or renewed by the Department in accordance with 6 NYCRR Part 621. The filing of a request by the *owner or operator* for a permit modification, revocation and reissuance, termination, a notification of planned changes or anticipated noncompliance does not limit, diminish and/or stay compliance with any terms of this permit.

O. Definitions

Definitions of key terms are included in Appendix A of this permit.

P. Re-Opener Clause

- If there is evidence indicating potential or realized impacts on water quality due to any stormwater discharge associated with construction activity covered by this permit, the owner or operator of such discharge may be required to obtain an individual permit or alternative general permit in accordance with Part VII.K. of this permit or the permit may be modified to include different limitations and/or requirements.
- 2. Any Department initiated permit modification, suspension or revocation will be conducted in accordance with 6 NYCRR Part 621, 6 NYCRR 750-1.18, and 6 NYCRR 750-1.20.

Q. Penalties for Falsification of Forms and Reports

In accordance with 6NYCRR Part 750-2.4 and 750-2.5, any person who knowingly makes any false material statement, representation, or certification in any application, record, report or other document filed or required to be maintained under this permit, including reports of compliance or noncompliance shall, upon conviction, be punished in accordance with ECL §71-1933 and or Articles 175 and 210 of the New York State Penal Law.

R. Other Permits

Nothing in this permit relieves the *owner or operator* from a requirement to obtain any other permits required by law.

APPENDIX A – Acronyms and Definitions

Acronyms

APO – Agency Preservation Officer

BMP – Best Management Practice

CPESC – Certified Professional in Erosion and Sediment Control

Cpv – Channel Protection Volume

CWA – Clean Water Act (or the Federal Water Pollution Control Act, 33 U.S.C. §1251 et seq)

DOW – Division of Water

EAF – Environmental Assessment Form

ECL - Environmental Conservation Law

EPA – U. S. Environmental Protection Agency

HSG – Hydrologic Soil Group

MS4 – Municipal Separate Storm Sewer System

NOI – Notice of Intent

NOT – Notice of Termination

NPDES – National Pollutant Discharge Elimination System

OPRHP – Office of Parks, Recreation and Historic Places

Qf – Extreme Flood

Qp – Overbank Flood

RRv – Runoff Reduction Volume

RWE - Regional Water Engineer

SEQR – State Environmental Quality Review

SEQRA - State Environmental Quality Review Act

SHPA – State Historic Preservation Act

SPDES – State Pollutant Discharge Elimination System

SWPPP – Stormwater Pollution Prevention Plan

TMDL – Total Maximum Daily Load

UPA – Uniform Procedures Act

USDA – United States Department of Agriculture

WQv – Water Quality Volume

Definitions

<u>All definitions in this section are solely for the purposes of this permit.</u> **Agricultural Building –** a structure designed and constructed to house farm implements, hay, grain, poultry, livestock or other horticultural products; excluding any structure designed, constructed or used, in whole or in part, for human habitation, as a place of employment where agricultural products are processed, treated or packaged, or as a place used by the public.

Agricultural Property –means the land for construction of a barn, *agricultural building*, silo, stockyard, pen or other structural practices identified in Table II in the "Agricultural Management Practices Catalog for Nonpoint Source Pollution in New York State" prepared by the Department in cooperation with agencies of New York Nonpoint Source Coordinating Committee (dated June 2007).

Alter Hydrology from Pre to Post-Development Conditions - means the postdevelopment peak flow rate(s) has increased by more than 5% of the pre-developed condition for the design storm of interest (e.g. 10 yr and 100 yr).

Combined Sewer - means a sewer that is designed to collect and convey both "sewage" and "stormwater".

Commence (Commencement of) Construction Activities - means the initial disturbance of soils associated with clearing, grading or excavation activities; or other construction related activities that disturb or expose soils such as demolition, stockpiling of fill material, and the initial installation of erosion and sediment control practices required in the SWPPP. See definition for "*Construction Activity(ies)*" also.

Construction Activity(ies) - means any clearing, grading, excavation, filling, demolition or stockpiling activities that result in soil disturbance. Clearing activities can include, but are not limited to, logging equipment operation, the cutting and skidding of trees, stump removal and/or brush root removal. Construction activity does not include routine maintenance that is performed to maintain the original line and grade, hydraulic capacity, or original purpose of a facility.

Construction Site – means the land area where *construction activity(ies)* will occur. See definition for "*Commence (Commencement of) Construction Activities*" and "*Larger Common Plan of Development or Sale*" also.

Dewatering – means the act of draining rainwater and/or groundwater from building foundations, vaults or excavations/trenches.

Direct Discharge (to a specific surface waterbody) - means that runoff flows from a *construction site* by overland flow and the first point of discharge is the specific surface waterbody, or runoff flows from a *construction site* to a separate storm sewer system

and the first point of discharge from the separate storm sewer system is the specific surface waterbody.

Discharge(s) - means any addition of any pollutant to waters of the State through an outlet or *point source*.

Embankment – means an earthen or rock slope that supports a road/highway.

Endangered or Threatened Species – see 6 NYCRR Part 182 of the Department's rules and regulations for definition of terms and requirements.

Environmental Conservation Law (ECL) - means chapter 43-B of the Consolidated Laws of the State of New York, entitled the Environmental Conservation Law.

Equivalent (Equivalence) – means that the practice or measure meets all the performance, longevity, maintenance, and safety objectives of the technical standard and will provide an equal or greater degree of water quality protection.

Final Stabilization - means that all soil disturbance activities have ceased and a uniform, perennial vegetative cover with a density of eighty (80) percent over the entire pervious surface has been established; or other equivalent stabilization measures, such as permanent landscape mulches, rock rip-rap or washed/crushed stone have been applied on all disturbed areas that are not covered by permanent structures, concrete or pavement.

General SPDES permit - means a SPDES permit issued pursuant to 6 NYCRR Part 750-1.21 and Section 70-0117 of the ECL authorizing a category of discharges.

Groundwater(s) - means waters in the saturated zone. The saturated zone is a subsurface zone in which all the interstices are filled with water under pressure greater than that of the atmosphere. Although the zone may contain gas-filled interstices or interstices filled with fluids other than water, it is still considered saturated.

Historic Property – means any building, structure, site, object or district that is listed on the State or National Registers of Historic Places or is determined to be eligible for listing on the State or National Registers of Historic Places.

Impervious Area (Cover) - means all impermeable surfaces that cannot effectively infiltrate rainfall. This includes paved, concrete and gravel surfaces (i.e. parking lots, driveways, roads, runways and sidewalks); building rooftops and miscellaneous impermeable structures such as patios, pools, and sheds.

Infeasible – means not technologically possible, or not economically practicable and achievable in light of best industry practices.

Larger Common Plan of Development or Sale - means a contiguous area where multiple separate and distinct *construction activities* are occurring, or will occur, under one plan. The term "plan" in "larger common plan of development or sale" is broadly defined as any announcement or piece of documentation (including a sign, public notice or hearing, marketing plan, advertisement, drawing, permit application, State Environmental Quality Review Act (SEQRA) environmental assessment form or other documents, zoning request, computer design, etc.) or physical demarcation (including boundary signs, lot stakes, surveyor markings, etc.) indicating that *construction activities* may occur on a specific plot.

For discrete construction projects that are located within a larger common plan of development or sale that are at least 1/4 mile apart, each project can be treated as a separate plan of development or sale provided any interconnecting road, pipeline or utility project that is part of the same "common plan" is not concurrently being disturbed.

Minimize – means reduce and/or eliminate to the extent achievable using control measures (including best management practices) that are technologically available and economically practicable and achievable in light of best industry practices.

Municipal Separate Storm Sewer (MS4) - a conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels, or storm drains):

- (i) Owned or operated by a State, city, town, borough, county, parish, district, association, or other public body (created by or pursuant to State law) having jurisdiction over disposal of sewage, industrial wastes, stormwater, or other wastes, including special districts under State law such as a sewer district, flood control district or drainage district, or similar entity, or an Indian tribe or an authorized Indian tribal organization, or a designated and approved management agency under section 208 of the CWA that discharges to surface waters of the State;
- (ii) Designed or used for collecting or conveying stormwater;
- (iii) Which is not a combined sewer; and
- (iv) Which is not part of a Publicly Owned Treatment Works (POTW) as defined at 40 CFR 122.2.

National Pollutant Discharge Elimination System (NPDES) - means the national system for the issuance of wastewater and stormwater permits under the Federal Water Pollution Control Act (Clean Water Act).

Natural Buffer – means an undisturbed area with natural cover running along a surface water (e.g. wetland, stream, river, lake, etc.).

New Development – means any land disturbance that does not meet the definition of Redevelopment Activity included in this appendix.

New York State Erosion and Sediment Control Certificate Program – a certificate program that establishes and maintains a process to identify and recognize individuals who are capable of developing, designing, inspecting and maintaining erosion and sediment control plans on projects that disturb soils in New York State. The certificate program is administered by the New York State Conservation District Employees Association.

NOI Acknowledgment Letter - means the letter that the Department sends to an owner or operator to acknowledge the Department's receipt and acceptance of a complete Notice of Intent. This letter documents the owner's or operator's authorization to discharge in accordance with the general permit for stormwater discharges from *construction activity*.

Nonpoint Source - means any source of water pollution or pollutants which is not a discrete conveyance or *point source* permitted pursuant to Title 7 or 8 of Article 17 of the Environmental Conservation Law (see ECL Section 17-1403).

Overbank –means flow events that exceed the capacity of the stream channel and spill out into the adjacent floodplain.

Owner or Operator - means the person, persons or legal entity which owns or leases the property on which the *construction activity* is occurring; an entity that has operational control over the construction plans and specifications, including the ability to make modifications to the plans and specifications; and/or an entity that has day-to-day operational control of those activities at a project that are necessary to ensure compliance with the permit conditions.

Performance Criteria – means the design criteria listed under the "Required Elements" sections in Chapters 5, 6 and 10 of the technical standard, New York State Stormwater Management Design Manual, dated January 2015. It does not include the Sizing Criteria (i.e. WQv, RRv, Cpv, Qp and Qf) in Part I.C.2. of the permit.

Point Source - means any discernible, confined and discrete conveyance, including but not limited to any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, vessel or other floating craft, or landfill leachate collection system from which *pollutants* are or may be discharged.

Pollutant - means dredged spoil, filter backwash, solid waste, incinerator residue, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand and industrial, municipal, agricultural waste and ballast discharged into water; which may cause or might reasonably be expected to cause pollution of the waters of the state in contravention of the standards or guidance values adopted as provided in 6 NYCRR Parts 700 et seq.

Qualified Inspector - means a person that is knowledgeable in the principles and practices of erosion and sediment control, such as a licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, New York State Erosion and Sediment Control Certificate Program holder or other Department endorsed individual(s).

It can also mean someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided that person has training in the principles and practices of erosion and sediment control. Training in the principles and practices of erosion and sediment control means that the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect has received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect supervision of the licensed receiving the initial training, the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect supervision of the licensed Professional Engineer or Registered Landscape Architect supervision of the licensed Professional Engineer or Registered Landscape Architect supervision of the licensed Professional Engineer or Registered Landscape Architect shall receive four (4) hours of training every three (3) years.

It can also mean a person that meets the *Qualified Professional* qualifications in addition to the *Qualified Inspector* qualifications.

Note: Inspections of any post-construction stormwater management practices that include structural components, such as a dam for an impoundment, shall be performed by a licensed Professional Engineer.

Qualified Professional - means a person that is knowledgeable in the principles and practices of stormwater management and treatment, such as a licensed Professional Engineer, Registered Landscape Architect or other Department endorsed individual(s). Individuals preparing SWPPPs that require the post-construction stormwater management practice component must have an understanding of the principles of hydrology, water quality management practice design, water quantity control design, and, in many cases, the principles of hydraulics. All components of the SWPPP that involve the practice of engineering, as defined by the NYS Education Law (see Article 145), shall be prepared by, or under the direct supervision of, a professional engineer licensed to practice in the State of New York.

Redevelopment Activity(ies) – means the disturbance and reconstruction of existing impervious area, including impervious areas that were removed from a project site within five (5) years of preliminary project plan submission to the local government (i.e. site plan, subdivision, etc.).

Regulated, Traditional Land Use Control MS4 - means a city, town or village with land use control authority that is authorized to discharge under New York State DEC's

SPDES General Permit For Stormwater Discharges from Municipal Separate Stormwater Sewer Systems (MS4s) or the City of New York's Individual SPDES Permit for their Municipal Separate Storm Sewer Systems (NY-0287890).

Routine Maintenance Activity - means *construction activity* that is performed to maintain the original line and grade, hydraulic capacity, or original purpose of a facility, including, but not limited to:

- Re-grading of gravel roads or parking lots,
- Cleaning and shaping of existing roadside ditches and culverts that maintains the approximate original line and grade, and hydraulic capacity of the ditch,
- Cleaning and shaping of existing roadside ditches that does not maintain the approximate original grade, hydraulic capacity and purpose of the ditch if the changes to the line and grade, hydraulic capacity or purpose of the ditch are installed to improve water quality and quantity controls (e.g. installing grass lined ditch),
- Placement of aggregate shoulder backing that stabilizes the transition between the road shoulder and the ditch or *embankment*,
- Full depth milling and filling of existing asphalt pavements, replacement of concrete pavement slabs, and similar work that does not expose soil or disturb the bottom six (6) inches of subbase material,
- Long-term use of equipment storage areas at or near highway maintenance facilities,
- Removal of sediment from the edge of the highway to restore a previously existing sheet-flow drainage connection from the highway surface to the highway ditch or *embankment*,
- Existing use of Canal Corp owned upland disposal sites for the canal, and
- Replacement of curbs, gutters, sidewalks and guide rail posts.

Site limitations – means site conditions that prevent the use of an infiltration technique and or infiltration of the total WQv. Typical site limitations include: seasonal high groundwater, shallow depth to bedrock, and soils with an infiltration rate less than 0.5 inches/hour. The existence of site limitations shall be confirmed and documented using actual field testing (i.e. test pits, soil borings, and infiltration test) or using information from the most current United States Department of Agriculture (USDA) Soil Survey for the County where the project is located.

Sizing Criteria – means the criteria included in Part I.C.2 of the permit that are used to size post-construction stormwater management control practices. The criteria include; Water Quality Volume (WQv), Runoff Reduction Volume (RRv), Channel Protection Volume (Cpv), *Overbank* Flood (Qp), and Extreme Flood (Qf).

State Pollutant Discharge Elimination System (SPDES) - means the system established pursuant to Article 17 of the ECL and 6 NYCRR Part 750 for issuance of permits authorizing discharges to the waters of the state.

Steep Slope – means land area designated on the current United States Department of Agriculture ("USDA") Soil Survey as Soil Slope Phase "D", (provided the map unit name is inclusive of slopes greater than 25%), or Soil Slope Phase E or F, (regardless of the map unit name), or a combination of the three designations.

Streambank – as used in this permit, means the terrain alongside the bed of a creek or stream. The bank consists of the sides of the channel, between which the flow is confined.

Stormwater Pollution Prevention Plan (SWPPP) – means a project specific report, including construction drawings, that among other things: describes the construction activity(ies), identifies the potential sources of pollution at the *construction site*; describes and shows the stormwater controls that will be used to control the pollutants (i.e. erosion and sediment controls; for many projects, includes post-construction stormwater management controls); and identifies procedures the *owner or operator* will implement to comply with the terms and conditions of the permit. See Part III of the permit for a complete description of the information that must be included in the SWPPP.

Surface Waters of the State - shall be construed to include lakes, bays, sounds, ponds, impounding reservoirs, springs, rivers, streams, creeks, estuaries, marshes, inlets, canals, the Atlantic ocean within the territorial seas of the state of New York and all other bodies of surface water, natural or artificial, inland or coastal, fresh or salt, public or private (except those private waters that do not combine or effect a junction with natural surface waters), which are wholly or partially within or bordering the state or within its jurisdiction. Waters of the state are further defined in 6 NYCRR Parts 800 to 941.

Temporarily Ceased – means that an existing disturbed area will not be disturbed again within 14 calendar days of the previous soil disturbance.

Temporary Stabilization - means that exposed soil has been covered with material(s) as set forth in the technical standard, New York Standards and Specifications for Erosion and Sediment Control, to prevent the exposed soil from eroding. The materials can include, but are not limited to, mulch, seed and mulch, and erosion control mats (e.g. jute twisted yarn, excelsior wood fiber mats).

Total Maximum Daily Loads (TMDLs) - A TMDL is the sum of the allowable loads of a single pollutant from all contributing point and *nonpoint sources*. It is a calculation of the maximum amount of a pollutant that a waterbody can receive on a daily basis and still meet *water quality standards*, and an allocation of that amount to the pollutant's sources. A TMDL stipulates wasteload allocations (WLAs) for *point source* discharges, load allocations (LAs) for *nonpoint sources*, and a margin of safety (MOS).

Trained Contractor - means an employee from the contracting (construction) company, identified in Part III.A.6., that has received four (4) hours of Department endorsed

Appendix A

training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the *trained contractor* shall receive four (4) hours of training every three (3) years.

It can also mean an employee from the contracting (construction) company, identified in Part III.A.6., that meets the *qualified inspector* qualifications (e.g. licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, New York State Erosion and Sediment Control Certificate Program holder, or someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity).

The *trained contractor* is responsible for the day to day implementation of the SWPPP.

Uniform Procedures Act (UPA) Permit - means a permit required under 6 NYCRR Part 621 of the Environmental Conservation Law (ECL), Article 70.

Water Quality Standard - means such measures of purity or quality for any waters in relation to their reasonable and necessary use as promulgated in 6 NYCRR Part 700 et seq.

APPENDIX B – Required SWPPP Components by Project Type

Table 1

Construction Activities that Require the Preparation of a SWPPP That Only Includes Erosion and Sediment Controls

The following construction activities that involve soil disturbances of one (1) or more acres of land, but less than five (5) acres: • Single family home not located in one of the watersheds listed in Appendix C or not *directly* discharging to one of the 303(d) segments listed in Appendix E Single family residential subdivisions with 25% or less impervious cover at total site build-out and not located in one of the watersheds listed in Appendix C and not directly discharging to one of the 303(d) segments listed in Appendix E • Construction of a barn or other agricultural building, silo, stock yard or pen. The following construction activities that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land: All construction activities located in the watersheds identified in Appendix D that involve soil disturbances between five thousand (5,000) square feet and one (1) acre of land. The following construction activities that involve soil disturbances of one (1) or more acres of land: Installation of underground, linear utilities; such as gas lines, fiber-optic cable, cable TV, electric, telephone, sewer mains, and water mains · Environmental enhancement projects, such as wetland mitigation projects, stormwater retrofits and stream restoration projects Pond construction • Linear bike paths running through areas with vegetative cover, including bike paths surfaced with an impervious cover · Cross-country ski trails and walking/hiking trails Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that are not part of residential, commercial or institutional development; • Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that include incidental shoulder or curb work along an existing highway to support construction of the sidewalk,

- bike path or walking path.Slope stabilization projects
- Slope flattening that changes the grade of the site, but does not significantly change the runoff characteristics

Appendix B

Table 1 (Continued) CONSTRUCTION ACTIVITIES THAT REQUIRE THE PREPARATION OF A SWPPP

THAT ONLY INCLUDES EROSION AND SEDIMENT CONTROLS

The following construction activities that involve soil disturbances of one (1) or more acres of land:

- Spoil areas that will be covered with vegetation
- Vegetated open space projects (i.e. recreational parks, lawns, meadows, fields, downhill ski trails) excluding projects that *alter hydrology from pre to post development* conditions,
- Athletic fields (natural grass) that do not include the construction or reconstruction of *impervious* area and do not alter hydrology from pre to post development conditions
- · Demolition project where vegetation will be established, and no redevelopment is planned
- Overhead electric transmission line project that does not include the construction of permanent access roads or parking areas surfaced with *impervious cover*
- Structural practices as identified in Table II in the "Agricultural Management Practices Catalog for Nonpoint Source Pollution in New York State", excluding projects that involve soil disturbances of greater than five acres and construction activities that include the construction or reconstruction of impervious area
- Temporary access roads, median crossovers, detour roads, lanes, or other temporary impervious areas that will be restored to pre-construction conditions once the construction activity is complete

Table 2

CONSTRUCTION ACTIVITIES THAT REQUIRE THE PREPARATION OF A SWPPP THAT INCLUDES POST-CONSTRUCTION STORMWATER MANAGEMENT PRACTICES

The following construction activities that involve soil disturbances of one (1) or more acres of land:

- Single family home located in one of the watersheds listed in Appendix C or *directly discharging* to one of the 303(d) segments listed in Appendix E
- Single family home that disturbs five (5) or more acres of land
- Single family residential subdivisions located in one of the watersheds listed in Appendix C or *directly discharging* to one of the 303(d) segments listed in Appendix E
- Single family residential subdivisions that involve soil disturbances of between one (1) and five (5) acres of land with greater than 25% impervious cover at total site build-out
- Single family residential subdivisions that involve soil disturbances of five (5) or more acres of land, and single family residential subdivisions that involve soil disturbances of less than five (5) acres that are part of a larger common plan of development or sale that will ultimately disturb five or more acres of land
- Multi-family residential developments; includes duplexes, townhomes, condominiums, senior housing complexes, apartment complexes, and mobile home parks
- Airports
- Amusement parks
- · Breweries, cideries, and wineries, including establishments constructed on agricultural land
- Campgrounds
- Cemeteries that include the construction or reconstruction of impervious area (>5% of disturbed area) or *alter the hydrology from pre to post development* conditions
- Commercial developments
- Churches and other places of worship
- Construction of a barn or other *agricultural building* (e.g. silo) and structural practices as identified in Table II in the "Agricultural Management Practices Catalog for Nonpoint Source Pollution in New York State" that include the construction or reconstruction of *impervious area*, excluding projects that involve soil disturbances of less than five acres.
- Golf courses
- Institutional development; includes hospitals, prisons, schools and colleges
- Industrial facilities; includes industrial parks
- Landfills
- Municipal facilities; includes highway garages, transfer stations, office buildings, POTW's, water treatment plants, and water storage tanks
- Office complexes
- · Playgrounds that include the construction or reconstruction of impervious area
- Sports complexes
- · Racetracks; includes racetracks with earthen (dirt) surface
- Road construction or reconstruction, including roads constructed as part of the construction activities listed in Table 1

Table 2 (Continued)

CONSTRUCTION ACTIVITIES THAT REQUIRE THE PREPARATION OF A SWPPP THAT INCLUDES POST-CONSTRUCTION STORMWATER MANAGEMENT PRACTICES

The following construction activities that involve soil disturbances of one (1) or more acres of land:

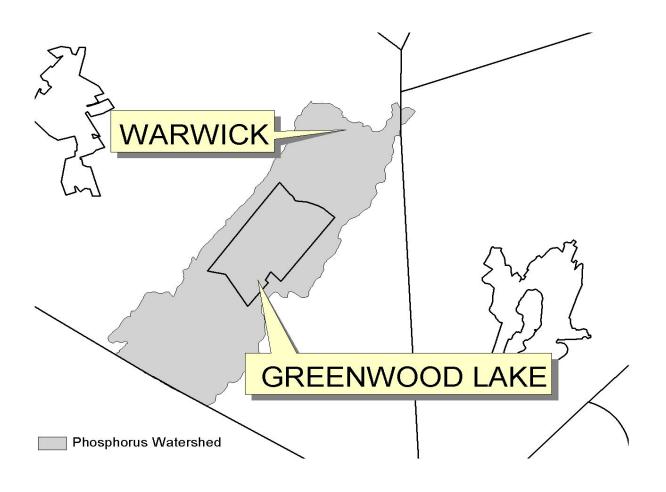
- Parking lot construction or reconstruction, including parking lots constructed as part of the construction activities listed in Table 1
- Athletic fields (natural grass) that include the construction or reconstruction of impervious area (>5% of disturbed area) or *alter the hydrology from pre to post development* conditions
- Athletic fields with artificial turf
- Permanent access roads, parking areas, substations, compressor stations and well drilling pads, surfaced with *impervious cover*, and constructed as part of an over-head electric transmission line project, wind-power project, cell tower project, oil or gas well drilling project, sewer or water main project or other linear utility project
- Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that are part of a residential, commercial or institutional development
- Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that are part of a highway construction or reconstruction project
- All other construction activities that include the construction or reconstruction of *impervious area* or *alter the hydrology from pre to post development* conditions, and are not listed in Table 1

APPENDIX C – Watersheds Requiring Enhanced Phosphorus Removal

Watersheds where *owners or operators* of construction activities identified in Table 2 of Appendix B must prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the Enhanced Phosphorus Removal Standards included in the technical standard, New York State Stormwater Management Design Manual ("Design Manual").

- Entire New York City Watershed located east of the Hudson River Figure 1
- Onondaga Lake Watershed Figure 2
- Greenwood Lake Watershed -Figure 3
- Oscawana Lake Watershed Figure 4
- Kinderhook Lake Watershed Figure 5

Figure 1 - New York City Watershed East of the Hudson



Appendix C

Figure 3 - Greenwood Lake Watershed

Figure 4 - Oscawana Lake Watershed

Figure 5 - Kinderhook Lake Watershed

APPENDIX D – Watersheds with Lower Disturbance Threshold

Watersheds where *owners or operators* of construction activities that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land must obtain coverage under this permit.

Entire New York City Watershed that is located east of the Hudson River - See Figure 1 in Appendix C

APPENDIX E – 303(d) Segments Impaired by Construction Related Pollutant(s)

List of 303(d) segments impaired by pollutants related to *construction activity* (e.g. silt, sediment or nutrients). The list was developed using "The Final New York State 2016 Section 303(d) List of Impaired Waters Requiring a TMDL/Other Strategy" dated November 2016. *Owners or operators* of single family home and single family residential subdivisions with 25% or less total impervious cover at total site build-out that involve soil disturbances of one or more acres of land, but less than 5 acres, and *directly discharge* to one of the listed segments below shall prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the New York State Stormwater Management Design Manual ("Design Manual"), dated January 2015.

COUNTY	WATERBODY	POLLUTANT	
Albany	Ann Lee (Shakers) Pond, Stump Pond	Nutrients	
Albany	Basic Creek Reservoir	Nutrients	
Allegany	Amity Lake, Saunders Pond	Nutrients	
Bronx	Long Island Sound, Bronx	Nutrients	
Bronx	Van Cortlandt Lake	Nutrients	
Broome	Fly Pond, Deer Lake, Sky Lake	Nutrients	
Broome	Minor Tribs to Lower Susquehanna (north)	Nutrients	
Broome	Whitney Point Lake/Reservoir	Nutrients	
Cattaraugus	Allegheny River/Reservoir	Nutrients	
Cattaraugus	Beaver (Alma) Lake	Nutrients	
Cattaraugus	Case Lake	Nutrients	
Cattaraugus	Linlyco/Club Pond	Nutrients	
Cayuga	Duck Lake	Nutrients	
Cayuga	Little Sodus Bay	Nutrients	
Chautauqua	Bear Lake	Nutrients	
Chautauqua	Chadakoin River and tribs	Nutrients	
Chautauqua	Chautauqua Lake, North	Nutrients	
Chautauqua	Chautauqua Lake, South	Nutrients	
Chautauqua	Findley Lake	Nutrients	
Chautauqua	Hulburt/Clymer Pond	Nutrients	
Clinton	Great Chazy River, Lower, Main Stem	Silt/Sediment	
Clinton	Lake Champlain, Main Lake, Middle	Nutrients	
Clinton	Lake Champlain, Main Lake, North	Nutrients	
Columbia	Kinderhook Lake	Nutrients	
Columbia	Robinson Pond	Nutrients	
Cortland	Dean Pond	Nutrients	

Dutchess	Fall Kill and tribs	Nutrients
Dutchess	Hillside Lake	Nutrients
Dutchess	Wappingers Lake	Nutrients
Dutchess	Wappingers Lake	Silt/Sediment
Erie	Beeman Creek and tribs	Nutrients
Erie	Ellicott Creek, Lower, and tribs	Silt/Sediment
Erie	Ellicott Creek, Lower, and tribs	Nutrients
Erie	Green Lake	Nutrients
Erie	Little Sister Creek, Lower, and tribs	Nutrients
Erie	Murder Creek, Lower, and tribs	Nutrients
Erie	Rush Creek and tribs	Nutrients
Erie	Scajaquada Creek, Lower, and tribs	Nutrients
Erie	Scajaquada Creek, Middle, and tribs	Nutrients
Erie	Scajaquada Creek, Upper, and tribs	Nutrients
Erie	South Branch Smoke Cr, Lower, and tribs	Silt/Sediment
Erie	South Branch Smoke Cr, Lower, and tribs	Nutrients
Essex	Lake Champlain, Main Lake, South	Nutrients
Essex	Lake Champlain, South Lake	Nutrients
Essex	Willsboro Bay	Nutrients
Genesee	Bigelow Creek and tribs	Nutrients
Genesee	Black Creek, Middle, and minor tribs	Nutrients
Genesee	Black Creek, Upper, and minor tribs	Nutrients
Genesee	Bowen Brook and tribs	Nutrients
Genesee	LeRoy Reservoir	Nutrients
Genesee	Oak Orchard Cr, Upper, and tribs	Nutrients
Genesee	Tonawanda Creek, Middle, Main Stem	Nutrients
Greene	Schoharie Reservoir	Silt/Sediment
Greene	Sleepy Hollow Lake	Silt/Sediment
Herkimer	Steele Creek tribs	Silt/Sediment
Herkimer	Steele Creek tribs	Nutrients
Jefferson	Moon Lake	Nutrients
Kings	Hendrix Creek	Nutrients
Kings	Prospect Park Lake	Nutrients
Lewis	Mill Creek/South Branch, and tribs	Nutrients
Livingston	Christie Creek and tribs	Nutrients
Livingston	Conesus Lake	Nutrients
Livingston	Mill Creek and minor tribs	Silt/Sediment
Monroe	Black Creek, Lower, and minor tribs	Nutrients
Monroe	Buck Pond	Nutrients
Monroe	Cranberry Pond	Nutrients

Monroe	Lake Ontario Shoreline, Western	Nutrients
Monroe	Long Pond	Nutrients
Monroe	Mill Creek and tribs	Nutrients
Monroe	Mill Creek/Blue Pond Outlet and tribs	Nutrients
Monroe	Minor Tribs to Irondequoit Bay	Nutrients
Monroe	Rochester Embayment - East	Nutrients
Monroe	Rochester Embayment - West	Nutrients
Monroe	Shipbuilders Creek and tribs	Nutrients
Monroe	Thomas Creek/White Brook and tribs	Nutrients
Nassau	Beaver Lake	Nutrients
Nassau	Camaans Pond	Nutrients
Nassau	East Meadow Brook, Upper, and tribs	Silt/Sediment
Nassau	East Rockaway Channel	Nutrients
Nassau	Grant Park Pond	Nutrients
Nassau	Hempstead Bay	Nutrients
Nassau	Hempstead Lake	Nutrients
Nassau	Hewlett Bay	Nutrients
Nassau	Hog Island Channel	Nutrients
Nassau	Long Island Sound, Nassau County Waters	Nutrients
Nassau	Massapequa Creek and tribs	Nutrients
Nassau	Milburn/Parsonage Creeks, Upp, and tribs	Nutrients
Nassau	Reynolds Channel, west	Nutrients
Nassau	Tidal Tribs to Hempstead Bay	Nutrients
Nassau	Tribs (fresh) to East Bay	Nutrients
Nassau	Tribs (fresh) to East Bay	Silt/Sediment
Nassau	Tribs to Smith/Halls Ponds	Nutrients
Nassau	Woodmere Channel	Nutrients
New York	Harlem Meer	Nutrients
New York	The Lake in Central Park	Nutrients
Niagara	Bergholtz Creek and tribs	Nutrients
Niagara	Hyde Park Lake	Nutrients
Niagara	Lake Ontario Shoreline, Western	Nutrients
Niagara	Lake Ontario Shoreline, Western	Nutrients
Oneida	Ballou, Nail Creeks and tribs	Nutrients
Onondaga	Harbor Brook, Lower, and tribs	Nutrients
Onondaga	Ley Creek and tribs	Nutrients
Onondaga	Minor Tribs to Onondaga Lake	Nutrients
Onondaga	Ninemile Creek, Lower, and tribs	Nutrients
Onondaga	Onondaga Creek, Lower, and tribs	Nutrients
Onondaga	Onondaga Creek, Middle, and tribs	Nutrients

Onondaga	Onondaga Lake, northern end	Nutrients		
Onondaga				
Ontario	Great Brook and minor tribs	Silt/Sediment		
Ontario	Great Brook and minor tribs	Nutrients		
Ontario	Hemlock Lake Outlet and minor tribs	Nutrients		
Ontario	Honeoye Lake	Nutrients		
Orange	Greenwood Lake	Nutrients		
Orange	Monhagen Brook and tribs	Nutrients		
Orange	Orange Lake	Nutrients		
Orleans	Lake Ontario Shoreline, Western	Nutrients		
Orleans	Lake Ontario Shoreline, Western	Nutrients		
Oswego	Lake Neatahwanta	Nutrients		
Oswego	Pleasant Lake	Nutrients		
Putnam	Bog Brook Reservoir	Nutrients		
Putnam	Boyd Corners Reservoir	Nutrients		
Putnam	Croton Falls Reservoir	Nutrients		
Putnam	Diverting Reservoir	Nutrients		
Putnam	East Branch Reservoir	Nutrients		
Putnam	Lake Carmel	Nutrients		
Putnam	Middle Branch Reservoir	Nutrients		
Putnam	Oscawana Lake	Nutrients		
Putnam	Palmer Lake	Nutrients		
Putnam	West Branch Reservoir	Nutrients		
Queens	Bergen Basin	Nutrients		
Queens	Flushing Creek/Bay	Nutrients		
Queens	Jamaica Bay, Eastern, and tribs (Queens)	Nutrients		
Queens	Nutrients			
Queens	Nutrients			
Queens	Willow Lake	Nutrients		
Rensselaer	Nassau Lake	Nutrients		
Rensselaer	Snyders Lake	Nutrients		
Richmond	Grasmere Lake/Bradys Pond	Nutrients		
Rockland	Congers Lake, Swartout Lake	Nutrients		
Rockland	Rockland Lake	Nutrients		
Saratoga	Ballston Lake	Nutrients		
Saratoga	Dwaas Kill and tribs	Silt/Sediment		
Saratoga	Dwaas Kill and tribs	Nutrients		
Saratoga	Lake Lonely	Nutrients		
Saratoga	Round Lake	Nutrients		
Saratoga	Tribs to Lake Lonely	Nutrients		

Schenectady	Collins Lake	Nutrients			
Schenectady	Duane Lake	Nutrients			
Schenectady	Mariaville Lake	Nutrients			
Schoharie	Engleville Pond	Nutrients			
Schoharie	Summit Lake	Nutrients			
Seneca	Reeder Creek and tribs	Nutrients			
St.Lawrence	Black Lake Outlet/Black Lake	Nutrients			
St.Lawrence	Fish Creek and minor tribs	Nutrients			
Steuben	Smith Pond	Nutrients			
Suffolk	Agawam Lake	Nutrients			
Suffolk	Big/Little Fresh Ponds	Nutrients			
Suffolk	Canaan Lake	Silt/Sediment			
Suffolk	Canaan Lake	Nutrients			
Suffolk	Flanders Bay, West/Lower Sawmill Creek	Nutrients			
Suffolk	Fresh Pond	Nutrients			
Suffolk	Great South Bay, East	Nutrients			
Suffolk	Great South Bay, Middle	Nutrients			
Suffolk	Great South Bay, West	Nutrients			
Suffolk	Lake Ronkonkoma	Nutrients			
Suffolk	Long Island Sound, Suffolk County, West	Nutrients			
Suffolk	Mattituck (Marratooka) Pond	Nutrients			
Suffolk	Meetinghouse/Terrys Creeks and tribs	Nutrients			
Suffolk	Mill and Seven Ponds	Nutrients			
Suffolk	Millers Pond	Nutrients			
Suffolk	Moriches Bay, East	Nutrients			
Suffolk	Moriches Bay, West	Nutrients			
Suffolk	olk Peconic River, Lower, and tidal tribs				
Suffolk	Nutrients				
Suffolk	Shinnecock Bay and Inlet	Nutrients			
Suffolk	Tidal tribs to West Moriches Bay	Nutrients			
Sullivan	Bodine, Montgomery Lakes	Nutrients			
Sullivan	Davies Lake	Nutrients			
Sullivan	Evens Lake	Nutrients			
Sullivan	Pleasure Lake	Nutrients			
Tompkins	Cayuga Lake, Southern End	Nutrients			
Tompkins	Cayuga Lake, Southern End	Silt/Sediment			
Tompkins	Owasco Inlet, Upper, and tribs	Nutrients			
Ulster	Ashokan Reservoir	Silt/Sediment			
Ulster	Esopus Creek, Upper, and minor tribs	Silt/Sediment			
Warren	Hague Brook and tribs	Silt/Sediment			

Warren	Huddle/Finkle Brooks and tribs	Silt/Sediment		
Warren	Indian Brook and tribs	Silt/Sediment		
Warren	Lake George	Silt/Sediment		
Warren	Tribs to L.George, Village of L George Silt/Sedime			
Washington	Cossayuna Lake	Nutrients		
Washington	Lake Champlain, South Bay	Nutrients		
Washington	Tribs to L.George, East Shore	Silt/Sediment		
Washington	Wood Cr/Champlain Canal and minor tribs	Nutrients		
Wayne	Port Bay	Nutrients		
Westchester	Amawalk Reservoir	Nutrients		
Westchester	Blind Brook, Upper, and tribs	Silt/Sediment		
Westchester	Cross River Reservoir	Nutrients		
Westchester	Lake Katonah	Nutrients		
Westchester	Lake Lincolndale	Nutrients		
Westchester	Lake Meahagh	Nutrients		
Westchester	Lake Mohegan	Nutrients		
Westchester	Lake Shenorock	Nutrients		
Westchester	Long Island Sound, Westchester (East)	Nutrients		
Westchester	Mamaroneck River, Lower	Silt/Sediment		
Westchester	Mamaroneck River, Upper, and minor tribs	Silt/Sediment		
Westchester	Muscoot/Upper New Croton Reservoir	Nutrients		
Westchester	New Croton Reservoir	Nutrients		
Westchester	nester Peach Lake			
Westchester	Reservoir No.1 (Lake Isle)	Nutrients		
Westchester	Saw Mill River, Lower, and tribs	Nutrients		
Westchester	Saw Mill River, Middle, and tribs	Nutrients		
Westchester	Sheldrake River and tribs	Silt/Sediment		
Westchester	Sheldrake River and tribs	Nutrients		
Westchester	Silver Lake	Nutrients		
Westchester	Teatown Lake	Nutrients		
Westchester	Titicus Reservoir	Nutrients		
Westchester	Truesdale Lake	Nutrients		
Westchester	Wallace Pond	Nutrients		
Wyoming	Java Lake	Nutrients		
Wyoming	Silver Lake	Nutrients		

<u>Region</u>	<u>Covering the</u> <u>FOLLOWING COUNTIES:</u>	DIVISION OF ENVIRONMENTAL PERMITS (DEP) <u>PERMIT ADMINISTRATORS</u>	DIVISION OF WATER (DOW) <u>Water (SPDES) Program</u>
1	NASSAU AND SUFFOLK	50 Circle Road Stony Brook, Ny 11790 Tel. (631) 444-0365	50 CIRCLE ROAD Stony Brook, Ny 11790-3409 Tel. (631) 444-0405
2	BRONX, KINGS, NEW YORK, QUEENS AND RICHMOND	1 Hunters Point Plaza, 47-40 21st St. Long Island City, Ny 11101-5407 Tel. (718) 482-4997	1 Hunters Point Plaza, 47-40 21st St. Long Island City, Ny 11101-5407 Tel. (718) 482-4933
3	DUTCHESS, ORANGE, PUTNAM, Rockland, Sullivan, Ulster and Westchester	21 South Putt Corners Road New Paltz, Ny 12561-1696 Tel. (845) 256-3059	100 HILLSIDE AVENUE, SUITE 1W WHITE PLAINS, NY 10603 TEL. (914) 428 - 2505
4	ALBANY, COLUMBIA, DELAWARE, GREENE, MONTGOMERY, OTSEGO, RENSSELAER, SCHENECTADY AND SCHOHARIE	1150 North Westcott Road Schenectady, Ny 12306-2014 Tel. (518) 357-2069	1130 North Westcott Road Schenectady, Ny 12306-2014 Tel. (518) 357-2045
5	Clinton, Essex, Franklin, Fulton, Hamilton, Saratoga, Warren and Washington	1115 State Route 86, Ро Вох 296 Ray Brook, Ny 12977-0296 Tel. (518) 897-1234	232 GOLF COURSE ROAD WARRENSBURG, NY 12885-1172 TEL. (518) 623-1200
6	HERKIMER, JEFFERSON, LEWIS, ONEIDA AND ST. LAWRENCE	STATE OFFICE BUILDING 317 WASHINGTON STREET WATERTOWN, NY 13601-3787 TEL. (315) 785-2245	STATE OFFICE BUILDING 207 GENESEE STREET UTICA, NY 13501-2885 TEL. (315) 793-2554
7	BROOME, CAYUGA, CHENANGO, CORTLAND, MADISON, ONONDAGA, OSWEGO, TIOGA AND TOMPKINS	615 ERIE BLVD. WEST SYRACUSE, NY 13204-2400 TEL. (315) 426-7438	615 ERIE BLVD. WEST SYRACUSE, NY 13204-2400 TEL. (315) 426-7500
8	CHEMUNG, GENESEE, LIVINGSTON, MONROE, ONTARIO, ORLEANS, SCHUYLER, SENECA, STEUBEN, WAYNE AND YATES	6274 EAST AVON-LIMA ROADAVON, NY 14414-9519 TEL. (585) 226-2466	6274 EAST AVON-LIMA RD. AVON, NY 14414-9519 TEL. (585) 226-2466
9	ALLEGANY, CATTARAUGUS, CHAUTAUQUA, ERIE, NIAGARA AND WYOMING	270 MICHIGAN AVENUE BUFFALO, NY 14203-2999 TEL. (716) 851-7165	270 MICHIGAN AVENUE BUFFALO, NY 14203-2999 TEL. (716) 851-7070

APPENDIX F – List of NYS DEC Regional Offices

Appendix B: NYSDEC SPDES General Permit Forms

LANGAN

NOTICE OF INTENT

New York State Department of Environmental Conservation

Division of Water

625 Broadway, 4th Floor

Albany, New York 12233-3505

Stormwater Discharges Associated with <u>Construction Activity</u> Under State Pollutant Discharge Elimination System (SPDES) General Permit # GP-0-20-001 All sections must be completed unless otherwise noted. Failure to complete all items may result in this form being returned to you, thereby delaying your coverage under this General Permit. Applicants must read and understand the conditions of the permit and prepare a Stormwater Pollution Prevention Plan prior to submitting this NOI. Applicants are responsible for identifying and obtaining other DEC permits that may be required.

-IMPORTANT-

RETURN THIS FORM TO THE ADDRESS ABOVE

OWNER/OPERATOR MUST SIGN FORM

Owner/Operator (Company Name/Private Owner Name/Municipality Name) Owner/Operator Contact Person Last Name (NOT CONSULTANT)
Owner/Operator Contact Person Last Name (NOT CONSULTANT)
Owner/Operator Contact Person Last Name (NOT CONSULTANT)
Owner/Operator Contact Person First Name
Owner/Operator Mailing Address
City
State Zip
Phone (Owner/Operator) Fax (Owner/Operator) - -
Email (Owner/Operator)
FED TAX ID (not required for individuals)

Project Site Informa	tion
Project/Site Name	
Street Address (NOT P.O. BOX)	
Side of Street O North O South O East O West	
City/Town/Village (THAT ISSUES BUILDING PERMIT)	
State Zip County	DEC Region
Name of Nearest Cross Street	
Distance to Nearest Cross Street (Feet)	Project In Relation to Cross Street O North O South O East O West
Tax Map Numbers Section-Block-Parcel	Tax Map Numbers

1. Provide the Geographic Coordinates for the project site in NYTM Units. To do this you **must** go to the NYSDEC Stormwater Interactive Map on the DEC website at:

www.dec.ny.gov/imsmaps/stormwater/viewer.htm

Zoom into your Project Location such that you can accurately click on the centroid of your site. Once you have located your project site, go to the tool boxes on the top and choose "i"(identify). Then click on the center of your site and a new window containing the X, Y coordinates in UTM will pop up. Transcribe these coordinates into the boxes below. For problems with the interactive map use the help function.

х	Coordinates			es (Eas	ting	J)

Y Coordinates			(N	ortł	ning)	

	t the predominant land use for both p T ONLY ONE CHOICE FOR EACH	re and post development conditions.												
	Pre-Development Existing Land Use	Post-Development Future Land Use												
\bigcirc For	REST	○ SINGLE FAMILY HOME <u>Number</u> of Lots												
\bigcirc pas	STURE/OPEN LAND	○ SINGLE FAMILY SUBDIVISION												
\bigcirc CUI	LTIVATED LAND	○ TOWN HOME RESIDENTIAL												
\bigcirc SIN	JGLE FAMILY HOME	○ MULTIFAMILY RESIDENTIAL												
\bigcirc SIN	IGLE FAMILY SUBDIVISION	○ INSTITUTIONAL/SCHOOL												
\bigcirc tov	NN HOME RESIDENTIAL	○ INDUSTRIAL												
\bigcirc MUI	TIFAMILY RESIDENTIAL	○ COMMERCIAL												
\bigcirc INS	STITUTIONAL/SCHOOL	○ MUNICIPAL												
\bigcirc INI	DUSTRIAL	○ ROAD/HIGHWAY												
\bigcirc CON	MERCIAL	○ RECREATIONAL/SPORTS FIELD												
\bigcirc RO	AD/HIGHWAY	○ BIKE PATH/TRAIL												
\bigcirc Reg	CREATIONAL/SPORTS FIELD	○ LINEAR UTILITY (water, sewer, gas, etc.)												
\bigcirc BIF	KE PATH/TRAIL	○ PARKING LOT												
\bigcirc LIN	NEAR UTILITY	○ CLEARING/GRADING ONLY												
\bigcirc pap	RKING LOT	\bigcirc demolition, no redevelopment												
⊖ oti	IER	\bigcirc WELL DRILLING ACTIVITY *(Oil, Gas, etc.)												

*Note: for gas well drilling, non-high volume hydraulic fractured wells only

4. In accordance with the larger common plan of enter the total project site area; the total existing impervious area to be disturbed (for activities); and the future impervious area of disturbed area. (Round to the nearest tenth of	area to be disturbed; redevelopment constructed within the										
	Future Impervious Area Within Disturbed Area										
5. Do you plan to disturb more than 5 acres of soil at any one time? \bigcirc Yes \bigcirc No											
6. Indicate the percentage of each Hydrologic So	pil Group(HSG) at the site.										
A B C ↓ ♀ ↓ ♀ ↓	D %										
7. Is this a phased project?	\bigcirc Yes \bigcirc No										
8. Enter the planned start and end dates of the disturbance activities.	End Date / / / / /										

8600089821

/	Identify lischarge		arest	surfa	ace	wat	erbo	dy(ies	to	wh	ich	COI	nst	ruc	tio	on	sit	еı	run	off	w	ill		
Name																									
		_				_																			
9a.	Type (of water	body	ident	cifi	.ed :	in Q'	uest	tion	9?															
0	Wetland	/ State	Juri	sdict	ion	On	Site	e (<i>I</i>	Answ	er 9	9b)														
0	Wetland	/ State	Juri	sdict	ion	Off	E Sit	ce																	
0	Wetland	/ Feder	al Ju	ırisdi	.cti	on ()n Si	ite	(An	swei	r 9	b)													
0	Wetland	/ Feder	al Ju	ırisdi	.cti	on (off S	Site	9																
0	Stream /	Creek	On Si	te																					
0	Stream /	Creek	off s	Site																					
0	River On	Site																							
0	River Of	f Site								9b	•	Hov	w Wa	as	the	we	etl	and	iċ	len	tif	ie	d?		
0	Lake On	Site									(Re	gula	ato	ry	Maj	p								
0	Lake Off	Site									(De	lin	eat	ed	by	Co	nsu	lta	ant					
0	Other Ty	pe On S	ite								(De	lin	eat	ed	by	Ar	my	Coi	rps	0	ΞE	ngiı	nee	rs
0	Other Ty	pe Off	Site								() oti	her	(i	den	ti	fy)								
10.		ne surfa) segmer										een	ide	ent	ifi	ed	as	а		0	Ye	5	\bigcirc N	o	
	505(a)	, pediici		пррст	.1017		JI U		20	001	•														
11.		is proje lix C of					e of	th	e Wa	lter	she	ds :	ideı	nti	fie	d :	in			0	Ye	5	0 N	0	
12.		e projec associa																		\cap	Ye	5	O N	0	
	waters							011												0		-	0.	-	

13.	Does this construction activity disturb land with no existing impervious cover and where the Soil Slope Phase is identified as an E or F on the USDA Soil Survey? If Yes, what is the acreage to be disturbed?	\bigcirc Yes	O No
	•		

14. Will the project disturb soils within a State regulated wetland or the protected 100 foot adjacent O Yes O No area?

•	6403089820	

15.	Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, culverts, etc)?											
16.	What is the name of the municipality/entity that owns the separate storm sewer system?											
17.	Does any runoff from the site enter a sewer classified \bigcirc Yes \bigcirc No \bigcirc Unknown as a Combined Sewer?											
18.	Will future use of this site be an agricultural property as defined by the NYS Agriculture and Markets Law? O Yes O No											
19.	Is this property owned by a state authority, state agency, O Yes O No federal government or local government?											
20.	Is this a remediation project being done under a Department approved work plan? (i.e. CERCLA, RCRA, Voluntary Cleanup O Yes O No Agreement, etc.)											
21.	Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS O Yes O No Standards and Specifications for Erosion and Sediment Control (aka Blue Book)?											
22.	Does this construction activity require the development of a SWPPP that includes the post-construction stormwater management practice component (i.e. Runoff Reduction, Water Quality and Orgonov Yes Orgonov Quantity Control practices/techniques)? If No, skip questions 23 and 27-39.											
23.	Has the post-construction stormwater management practice component of the SWPPP been developed in conformance with the current NYS O Yes O No Stormwater Management Design Manual?											

2	0251089825 4. The Stormwater Pollution Prevention Plan (SWPPP) was prepared by:	
<i>с</i> 21	O Professional Engineer (P.E.)	
	O Soil and Water Conservation District (SWCD)	
	<pre>O Registered Landscape Architect (R.L.A)</pre>	
	O Certified Professional in Erosion and Sediment Control (CPESC)	
	O Owner/Operator	
	○ Other	
SWP	PP Preparer	
Con	tact Name (Last, Space, First)	
Mai	ling Address	_
Cit	У	
Sta		
Pho		
Ema		
		\square
\vdash		

SWPPP Preparer Certification

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-20-001. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

First Nam	е						MI
Last Name							
Signatu	re]
							Date

25.										n se epar				e	sc	che	ď	ule	f	or	<u> </u>	the) p)1	anne	∋ċ	l m	aı	nag	jer	ner	ıt				0	Ye	s	С) Nc	>
26.	26. Select all of the erosion and sediment contro employed on the project site: Temporary Structural													rol practices that will be Vegetative Measures																											
			-	Te	μp		Lai	<u>.</u> <u>y</u>	6		uc		u	.a.	_										ve	9	el	a		ve	= 1	16	ac	u	те	5	-				
			⊖ Cł	ıe	ck	D	ams																(С	Bru	sl	h M	ſa	tt:	in	g										
			0 Co	on	str	u	cti	on	F	load	S	ta	ab	ili	ĹΖ	at	Lc	m					O Dune Stabilization																		
			() Di	ıs	tΟ	:0	ntro	01															\bigcirc Grassed Waterway																		
																○ Mulching																									
																С	Pro	te	ect	:i	ng	v	ege	et	at	io	n														
																С	Rec	re	eat	i	on	A	rea	a	Imj	pr	ov	eı	men	t											
	O Pipe Slope Drain														С	See	d:	ing	J																						
	O Portable Sediment Tank														\bigcirc Sodding																										
	\bigcirc Rock Dam														\bigcirc Straw/Hay Bale Dike																										
	\bigcirc Sediment Basin														\bigcirc Streambank Protection																										
	\bigcirc Sediment Traps														○ Temporary Swale																										
	\bigcirc silt Fence																																								
			0 St	a	bil	i	zed	C	on	str	uc	ti	Lo	n I	En	tra	ar	ice					\bigcirc Vegetating Waterways																		
										let			ot	ect	i	on							Permanent Structural																		
							_			Di						-							\bigcirc Debris Basin																		
					_		_			ess				_					ıg				(C	Div	e	rsi	lo	n												
					_		_			mdr	aı	n	D	lve	er	SIC	or	1					(C	Gra	de	e S	st	ab:	il	iza	at	io	n	st	r	uct	ur	e		
			О Те 0 —		_		_																O Grade Stabilization Structure O Land Grading																		
							_	Cu	rt	ain															Lin					_		(Ro	ck	:)						
			() Wa	ιt	er	b	ars																		Pav											e)				
			F	2 i .	ot.	2	chn	ic	בי	1															Pav							-					-				
																							(С	Ret	a	ini	n	a V	Ma	11										
							latt	in	ıg																				-			rc	te	ct	io	n					
			O W	at	tl	ir	ıg																\bigcirc Riprap Slope Protection \bigcirc Rock Outlet Protection																		
																									Str																
<u>c</u>)th	<u>ler</u>		-					-		-						-						, T	-						-											

Post-construction Stormwater Management Practice (SMP) Requirements

<u>Important</u>: Completion of Questions 27-39 is not required if response to Question 22 is No.

- 27. Identify all site planning practices that were used to prepare the final site plan/layout for the project.
 - \bigcirc Preservation of Undisturbed Areas
 - Preservation of Buffers
 - O Reduction of Clearing and Grading
 - O Locating Development in Less Sensitive Areas
 - Roadway Reduction
 - \bigcirc Sidewalk Reduction
 - Driveway Reduction
 - Cul-de-sac Reduction
 - Building Footprint Reduction
 - Parking Reduction
- 27a. Indicate which of the following soil restoration criteria was used to address the requirements in Section 5.1.6("Soil Restoration") of the Design Manual (2010 version).
 - All disturbed areas will be restored in accordance with the Soil Restoration requirements in Table 5.3 of the Design Manual (see page 5-22).
 - O Compacted areas were considered as impervious cover when calculating the WQv Required, and the compacted areas were assigned a post-construction Hydrologic Soil Group (HSG) designation that is one level less permeable than existing conditions for the hydrology analysis.
- 28. Provide the total Water Quality Volume (WQv) required for this project (based on final site plan/layout).

Tota	L WQv	Re	qui	lre	đ
					acre-feet

29. Identify the RR techniques (Area Reduction), RR techniques(Volume Reduction) and Standard SMPs with RRv Capacity in Table 1 (See Page 9) that were used to reduce the Total WQv Required(#28).

Also, provide in Table 1 the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

Note: Redevelopment projects shall use Tables 1 and 2 to identify the SMPs used to treat and/or reduce the WQv required. If runoff reduction techniques will not be used to reduce the required WQv, skip to question 33a after identifying the SMPs.

7738089822

Table 1	-
---------	---

Runoff Reduction (RR) Techniques and Standard Stormwater Management Practices (SMPs)

O Conservation of Natural Areas (RR-1) and/or O Sheetflow to Riparian Buffers/Filters Strips (RR-2) and/or O Tree Planting/Tree Pit (RR-3) and/or O Tree Planting/Tree Pit (RR-3) and/or O Tree Planting/Tree Pit (RR-3) and/or O Disconnection of Rooftop Runoff (RR-4) and/or Re Techniques (Volume Reduction) O Vegetated Swale (RR-5) Rain Garden (RR-6) Stormwater Planter (RR-7) Rain Barrel/Cistern (RR-8) O Forous Pavement (RR-9) Green Roof (RR-10) Infiltration Trench (I-1) Dry Well (I-3)		Total Contributing		Total (
Sheetflow to Riparian Buffers/Filters Strips (RR-2) . and/or Tree Planting/Tree Pit (RR-3) . and/or Disconnection of Rooftop Runoff (RR-4) . and/or RR Techniques (Volume Reduction) . and/or Vegetated Swale (RR-5) . . Rain Garden (RR-6) . . Stormwater Planter (RR-7) . . Rain Barrel/Cistern (RR-8) . . O Forous Pavement (RR-9) . . Green Roof (RR-10) . . Standard SMPs with Rev Capacity . . Infiltration Trench (I-1) . . Dry Well (I-3) . . Dry Well (I-3) . . Dry Well (I-3) . . Wet Fond (P-5) . . Dry Svale (0-1) . . Standard SMPs . . Mutropool Extended Detention (P-1) . . Wet Fond (P-2) . . Mutropool Extended Detention (P-3) . . Sufface Sand Filter (F-1)	RR Techniques (Area Reduction)	Area (acres)	Im	perviou	is .	Are	a(acres)
Buffers/Filters Strips (RR-2) and/or - O Tree Planting/Tree Pit (RR-3) and/or - O Disconnection of Rooftop Runoff (RR-4) and/or - Paisconnection of Rooftop Runoff (RR-4) and/or - Rain Garden (RR-6) and/or - Rain Garden (RR-6) - - Stormwater Planter (RR-7) - - O Porous Pavement (RR-9) - - Green Roof (RR-10) - - Standard SMPs with RRv Capacity - - Infiltration Trench (I-1) - - Dry Well (I-3) - - Underground Infiltration System (I-4) - - Dry Wale (0-1) - - - Standard SMPs - - - Mucropool Extended Detention (P-1) - - - Wet Pond (P-2) - - - - Wat Extended Detention (P-3) - - - - Wat Pond (P-5) - - - - - Duderground Sand Filter (F-1) <t< td=""><td></td><td></td><td>and/or</td><td></td><td></td><td>•</td><td></td></t<>			and/or			•	
Disconnection of Rooftop Runoff (RR-4)	O Sheetflow to Riparian Buffers/Filters Strips (RR-2)		and/or		,	•	
RR Techniques (Volume Reduction) Vegetated Swale (RR-5) Rain Garden (RR-6) Stormwater Planter (RR-7) Rain Barrel/Cistern (RR-8) Porous Pavement (RR-9) Green Roof (RR-10) Standard SMPs with RRV Capacity Infiltration Trench (I-1) Dry Well (I-3) Underground Infiltration System (I-4) Dry Swale (0-1) Standard SMPs Micropool Extended Detention (P-1) Wet Extended Detention (P-3) Wet Extended Detention (P-4) Watifier (F-1) Organic Filter (F-4) Organic Filter (F-4) Organic Filter (F-4) Organic Filter (F-4) Organic Filter (Wet-3)	\bigcirc Tree Planting/Tree Pit (RR-3)	•	and/or		'	-	
O Vegetated Swale (RR-5)	\bigcirc Disconnection of Rooftop Runoff (RR-4)	••	and/or			•	
Rain Garden (RR-6) . Stormwater Planter (RR-7) . Rain Barrel/Cistern (RR-8) . Porous Pavement (RR-9) . Green Roof (RR-10) . Standard SMPs with RRV Capacity . Infiltration Trench (I-1) . Dry Well (I-3) . Underground Infiltration System (I-4) . Dry Swale (O-1) . Standard SMPS . Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) .	RR Techniques (Volume Reduction)						
Stormwater Planter (RR-7) . Rain Barrel/Cistern (RR-8) . Porous Pavement (RR-9) . Green Roof (RR-10) . Infiltration Trench (I-1) . Infiltration Basin (I-2) . Dry Well (I-3) . Underground Infiltration System (I-4) . Bioretention (F-5) . Dry Swale (0-1) . Standard SMPs . Micropool Extended Detention (P-1) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Perimeter Sand Filter (F-3) . Organic Filter (F-4) . Organic Filter (F-4) . Shallow Wetland (W-1) . Prod/Wetland System (W-3) .	\bigcirc Vegetated Swale (RR-5) \cdots	•••••			_ ·	•	
Rain Barrel/Cistern (RR-8) . Porous Pavement (RR-9) . Green Roof (RR-10) . Infiltration Trench (I-1) . Infiltration Basin (I-2) . Dry Well (I-3) . Underground Infiltration System (I-4) . Bioretention (F-5) . Dry Swale (0-1) . Standard SMPs . Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wattiple Pond System (P-4) . Surface Sand Filter (F-1) . Underground Sand Filter (F-3) . Organic Filter (F-4) . Shallow Wetland (W-1) . Pond/Wetland System (W-3) .	\bigcirc Rain Garden (RR-6)		•••••		'	•	
O Porous Pavement (RR-9)	\bigcirc Stormwater Planter (RR-7)		• • • • • •		'	•	
Green Roof (RR-10)	\bigcirc Rain Barrel/Cistern (RR-8)		• • • • • •		'	•	
Standard SMPs with RRV Capacity O Infiltration Trench (I-1) O Infiltration Basin (I-2) O Dry Well (I-3) O Underground Infiltration System (I-4) O Bioretention (F-5) O Dry Swale (0-1) Standard SMPS Micropool Extended Detention (P-1) Wet Pond (P-2) Wet Extended Detention (P-3) Wultiple Pond System (P-4) Surface Sand Filter (F-1) O Underground Sand Filter (F-2) O Perimeter Sand Filter (F-3) Organic Filter (F-4) O Standard Wetland (W-1) O Pond/Wetland System (W-3)	\bigcirc Porous Pavement (RR-9)	••••	•••••			·L	
O Infiltration Trench (I-1) . O Infiltration Basin (I-2) . O Dry Well (I-3) . O Underground Infiltration System (I-4) . O Bioretention (F-5) . O Dry Swale (O-1) . Standard SMPs . Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Surface Sand Filter (F-1) . O Underground Sand Filter (F-2) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .	\bigcirc Green Roof (RR-10)						
Infiltration Basin (I-2)	Standard SMPs with RRv Capacity						
Infiltration Basin (I-2)	\bigcirc Infiltration Trench (I-1) ••••••••••••••••••••••••••••••••••••					•	
Ory Well (I-3)							
Underground Infiltration System (I-4)							
Bioretention (F-5) . Dry Swale (0-1) . Standard SMPs . Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Pocket Pond (P-5) . Surface Sand Filter (F-1) . Organic Filter (F-2) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .							
Ory Swale (0-1) . Standard SMPs Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Pocket Pond (P-5) . Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) .						•	
Standard SMPs Micropool Extended Detention (P-1) Wet Pond (P-2) Wet Extended Detention (P-3) Wat Extended Detention (P-3) Multiple Pond System (P-4) Pocket Pond (P-5) Surface Sand Filter (F-1) Underground Sand Filter (F-2) Perimeter Sand Filter (F-3) Organic Filter (F-4) Shallow Wetland (W-1) Extended Detention Wetland (W-2) Pond/Wetland System (W-3)	\bigcirc Dry Swale (0-1)					•	
Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Pocket Pond (P-5) . Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) .	-						
Wet Pond (P-2) • Wet Extended Detention (P-3) • Multiple Pond System (P-4) • Pocket Pond (P-5) • Surface Sand Filter (F-1) • Underground Sand Filter (F-2) • Perimeter Sand Filter (F-3) • Organic Filter (F-4) • Shallow Wetland (W-1) • Extended Detention Wetland (W-2) • Pond/Wetland System (W-3) •	Standard SMPs						
Wet Extended Detention (P-3) • Multiple Pond System (P-4) • Pocket Pond (P-5) • Surface Sand Filter (F-1) • Underground Sand Filter (F-2) • Perimeter Sand Filter (F-3) • Organic Filter (F-4) • Shallow Wetland (W-1) • Extended Detention Wetland (W-2) • Pond/Wetland System (W-3) •	\bigcirc Micropool Extended Detention (P-1)						
Multiple Pond System (P-4) • Pocket Pond (P-5) • Surface Sand Filter (F-1) • Underground Sand Filter (F-2) • Perimeter Sand Filter (F-3) • Organic Filter (F-4) • Shallow Wetland (W-1) • Extended Detention Wetland (W-2) • Pond/Wetland System (W-3) •	\bigcirc Wet Pond (P-2)	••••••	••••			•	
Multiple Pond System (P-4) • Pocket Pond (P-5) • Surface Sand Filter (F-1) • Underground Sand Filter (F-2) • Perimeter Sand Filter (F-3) • Organic Filter (F-4) • Shallow Wetland (W-1) • Extended Detention Wetland (W-2) • Pond/Wetland System (W-3) •	\bigcirc Wet Extended Detention (P-3)					•	
Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Perimeter Sand Filter (F-3) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .							
Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Perimeter Sand Filter (F-3) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .	\bigcirc Pocket Pond (P-5) ·····		••••			•	
Underground Sand Filter (F-2) . Perimeter Sand Filter (F-3) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .							
OPerimeter Sand Filter (F-3) • Organic Filter (F-4) • Shallow Wetland (W-1) • Extended Detention Wetland (W-2) • Pond/Wetland System (W-3) •					,		
Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .						•	
O Shallow Wetland (W-1) • O Extended Detention Wetland (W-2) • O Pond/Wetland System (W-3) •	\bigcirc Organic Filter (F-4)	•••••	••••				
○ Extended Detention Wetland (W-2) • • ○ Pond/Wetland System (W-3) • •						•	
○ Pond/Wetland System (W-3)	\bigcirc Extended Detention Wetland (W-2)					•	
						•	
					_],	•	
○ Wet Swale (0-2)						•	

0762089822									_
	Table 2 -	Alternativ (DO NOT IN USED FOR I	NCLUDE PF			ſĠ			
Alternative SMP							al Contr vious Ar		
	·	• • • • • • • • • • •	•••••	• • • • • • •	• • • • • • • • • • • • • • • • • • •	··			_
O Other Provide the name proprietary pract					(i.e.	•• 🗌	• [_		
Name									
	ent projects which ons 28, 29, 33 and ed and total WQv	d 33a to p	rovide SI	MPs us	ed, tot				
	ne Total RRv prov MPs with RRv capa						me Reduo	ction)	and
Total RRv	provided	et							
total WQv r If Yes, go	al RRv provided (required (#28). to question 36.	#30) great	er than	or equ	al to	the	0	Yes	O No
	e Minimum RRv req Rv Required = (P)				c)]				
Minimum RR	v Required	et							
Minimum RRV If Yes, go <u>Note</u> : Us specific 100% of specific 100% of SWPPP. If No, sizi	al RRv provided (r Required (#32)? to question 33. se the space prove site limitation WQv required (#2 c site limitation the WQv required .ng criteria has SWPPP preparer m	rided in qu s and just 8). A <u>det</u> s and just (#28) mus not been m	estion # ificatio <u>ailed</u> ev ificatio t also b et, so N	39 to n for aluati n for e incl OI can	summar not rea on of not rea uded in not b a	<u>ize</u> the ducing the ducing n the e	e	Yes	O No

1766089827

33. Identify the Standard SMPs in Table 1 and, if applicable, the Alternative SMPs in Table 2 that were used to treat the remaining total WQv(=Total WQv Required in 28 - Total RRv Provided in 30).

Also, provide in Table 1 and 2 the total <u>impervious</u> area that contributes runoff to each practice selected.

Note: Use Tables 1 and 2 to identify the SMPs used on Redevelopment projects.

33a. Indicate the Total WQv provided (i.e. WQv treated) by the SMPs identified in question #33 and Standard SMPs with RRv Capacity identified in question 29. WQv Provided acre-feet Note: For the standard SMPs with RRv capacity, the WQv provided by each practice = the WQv calculated using the contributing drainage area to the practice - RRv provided by the practice. (See Table 3.5 in Design Manual) Provide the sum of the Total RRv provided (#30) and 34. the WQv provided (#33a). Is the sum of the RRv provided (#30) and the WQv provided 35. (#33a) greater than or equal to the total WQv required (#28)? 🔾 Yes 🔷 No If Yes, go to question 36. If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria. Provide the total Channel Protection Storage Volume (CPv) required and 36. provided or select waiver (36a), if applicable. CPv Required CPv Provided acre-feet acre-feet 36a. The need to provide channel protection has been waived because: O Site discharges directly to tidal waters or a fifth order or larger stream. \bigcirc Reduction of the total CPv is achieved on site through runoff reduction techniques or infiltration systems.

37. Provide the Overbank Flood (Qp) and Extreme Flood (Qf) control criteria or select waiver (37a), if applicable.

Total Overbank Flood Control Criteria (Qp)

Pre-Development	Post-development					
Total Extreme Flood Control	Criteria (Qf)					
Pre-Development Post-development						
CFS	CFS					

37a.	The need to meet the Qp and Qf criteria has been waived because:
	\bigcirc Site discharges directly to tidal waters
	or a fifth order or larger stream.
	\bigcirc Downstream analysis reveals that the Qp and Qf
	controls are not required

38. Has a long term Operation and Maintenance Plan for the post-construction stormwater management practice(s) been
O Yes
No developed?

If Yes, Identify the entity responsible for the long term Operation and Maintenance

39. Use this space to summarize the specific site limitations and justification for not reducing 100% of WQv required(#28). (See question 32a) This space can also be used for other pertinent project information.

. 4285089826

40.	Identify other DEC permits, existing and new, that are required for this project/facility.
	○ Air Pollution Control
	○ Coastal Erosion
	\bigcirc Hazardous Waste
	\bigcirc Long Island Wells
	\bigcirc Mined Land Reclamation
	🔿 Solid Waste
	\bigcirc Navigable Waters Protection / Article 15
	○ Water Quality Certificate
	○ Dam Safety
	○ Water Supply
	○ Freshwater Wetlands/Article 24
	\bigcirc Tidal Wetlands
	\bigcirc Wild, Scenic and Recreational Rivers
	\bigcirc Stream Bed or Bank Protection / Article 15
	○ Endangered or Threatened Species(Incidental Take Permit)
	○ Individual SPDES
	○ SPDES Multi-Sector GP
	0 0ther
	○ None

41.	Does this project require a US Army Corps of Engineers Wetland Permit? If Yes, Indicate Size of Impact.	⊖ Yes	0 No
42.	Is this project subject to the requirements of a regulated, traditional land use control MS4? (If No, skip question 43)	○Үез	() No
43.	Has the "MS4 SWPPP Acceptance" form been signed by the principal executive officer or ranking elected official and submitted along with this NOI?	⊖ Yes	O No
44.	If this NOI is being submitted for the purpose of continuing or trans coverage under a general permit for stormwater runoff from constructi activities, please indicate the former SPDES number assigned.	-	

Owner/Operator Certification

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.

Print First Name	MI
Print Last Name	
Owner/Operator Signature	
	Date

	NEW YORK OPPORTUNITYDepartment of Environmental ConservationDepartment of Environmental Conservation Division of Water 625 Broadway, 4th Floor Albany, New York 12233-3505r Pollution Prevention Plan (SWPPP) Acceptance
	Form
	ivities Seeking Authorization Under SPDES General Permit mpleted Form to Notice Of Intent and Submit to Address Above)
I. Project Owner/Operato	r Information
1. Owner/Operator Name:	Chocolare Sky, LLC
2. Contact Person:	Donald Utschig
3. Street Address:	81 Meyersville Road
4. City/State/Zip:	Chatham, NJ 07928
II. Project Site Informatic	on la
5. Project/Site Name:	Stormytown Road Subdivision
6. Street Address:	39 Stormytown Road
7. City/State/Zip:	Ossining, NY 10562
III. Stormwater Pollution	Prevention Plan (SWPPP) Review and Acceptance Information
8. SWPPP Reviewed by:	
9. Title/Position:	
10. Date Final SWPPP Rev	iewed and Accepted:
IV. Regulated MS4 Informa	ation
11. Name of MS4:	Town of Ossining
12. MS4 SPDES Permit Ide	ntification Number: NYR20A
13. Contact Person:	
14. Street Address:	
15. City/State/Zip:	
16. Telephone Number:	

SWPPP Preparer Certification Form

SPDES General Permit for Stormwater Discharges From Construction Activity (GP-0-20-001)

Project Site Information Project/Site Name

Stormytown Road Subdivision

Owner/Operator Information

Owner/Operator (Company Name/Private Owner/Municipality Name)

Langan

Certification Statement – SWPPP Preparer

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-20-001. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

Michael		Finan	
First name	MI	Last Name	
Signature		Date	

Department of Environmental Conservation

Owner/Operator Certification Form

SPDES General Permit For Stormwater Discharges From Construction Activity (GP-0-20-001)

Project/Site Name:	Stormytown Road	Subdivision	
eNOI Submission Nu	ımber:		
eNOI Submitted by:	Owner/Operator	SWPPP Preparer	Other

Certification Statement - Owner/Operator

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.

Owner/Operator First Name

M.I. Last Name

Signature

Date

New York State Department of Environmental Conservation Division of Water 625 Broadway, 4th Floor Albany, New York 12233-3505 *(NOTE: Submit completed form to address above)* NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity		
Please indicate your permit identification number: NY	R	
I. Owner or Operator Information		
1. Owner/Operator Name:		
2. Street Address:		
3. City/State/Zip:		
4. Contact Person:	4a.Telephone:	
4b. Contact Person E-Mail:		
II. Project Site Information		
5. Project/Site Name:		
6. Street Address:		
7. City/Zip:		
8. County:		
III. Reason for Termination		
9a. □ All disturbed areas have achieved final stabilization in accord SWPPP. *Date final stabilization completed (month/year):	ordance with the general permit and	
9b. □ Permit coverage has been transferred to new owner/opera permit identification number: NYR		
9c. □ Other (Explain on Page 2)		
IV. Final Site Information:		
10a. Did this construction activity require the development of a S stormwater management practices? □ yes □ no (If no	SWPPP that includes post-construction , go to question 10f.)	
10b. Have all post-construction stormwater management practic constructed?		
10c. Identify the entity responsible for long-term operation and maintenance of practice(s)?		

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity - continued

10d. Has the entity responsible for long-term operation and maintenance been given a copy of the operation and maintenance plan required by the general permit? □ yes □ no

10e. Indicate the method used to ensure long-term operation and maintenance of the post-construction stormwater management practice(s):

□ Post-construction stormwater management practice(s) and any right-of-way(s) needed to maintain practice(s) have been deeded to the municipality.

Executed maintenance agreement is in place with the municipality that will maintain the post-construction stormwater management practice(s).

□ For post-construction stormwater management practices that are privately owned, a mechanism is in place that requires operation and maintenance of the practice(s) in accordance with the operation and maintenance plan, such as a deed covenant in the owner or operator's deed of record.

□ For post-construction stormwater management practices that are owned by a public or private institution (e.g. school, university or hospital), government agency or authority, or public utility; policy and procedures are in place that ensures operation and maintenance of the practice(s) in accordance with the operation and maintenance plan.

10f. Provide the total area of impervious surface (i.e. roof, pavement, concrete, gravel, etc.) constructed within the disturbance area?

(acres)

11. Is this project subject to the requirements of a regulated, traditional land use control MS4? $\hfill\square$ yes $\hfill\square$ no

(If Yes, complete section VI - "MS4 Acceptance" statement

V. Additional Information/Explanation: (Use this section to answer questions 9c. and 10b., if applicable)

VI. MS4 Acceptance - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative (Note: Not required when 9b. is checked -transfer of coverage)

I have determined that it is acceptable for the owner or operator of the construction project identified in question 5 to submit the Notice of Termination at this time.

Printed Name:

Title/Position:

Signature:

Date:

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity - continued

VII. Qualified Inspector Certification - Final Stabilization:
 I hereby certify that all disturbed areas have achieved final stabilization as defined in the current version of the general permit, and that all temporary, structural erosion and sediment control measures have been removed. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.
 Printed Name:

Title/Position:

Signature:

Date:

Date:

VIII. Qualified Inspector Certification - Post-construction Stormwater Management Practice(s):

I hereby certify that all post-construction stormwater management practices have been constructed in conformance with the SWPPP. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

Printed Name:

Title/Position:

Signature:

IX. Owner or Operator Certification

I hereby certify that this document was prepared by me or under my direction or supervision. My determination, based upon my inquiry of the person(s) who managed the construction activity, or those persons directly responsible for gathering the information, is that the information provided in this document is true, accurate and complete. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

Printed Name:

Title/Position:

Signature:

Date:

(NYS DEC Notice of Termination - January 2015)

Appendix C: Certification Statements

Owner's/Operator's Certification

"I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted."

Name (please print)			
Title		Date	
Address			
Phone	Email		
Signature			

Contractor's Certification

"I hereby certify under penalty of law that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the qualified inspector during a site inspection. I also understand that the owner or operator must comply with the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I am aware that there are significant penalties for submitting false information that I do not believe to be true, including the possibility of fine and imprisonment for knowing violations."

Contracting Firm Name			
Address			
Phone	Fax		
Name (please print)			
Title		Date	
Signature			
SWPPP Responsibilities			
Trained Individual Name (please print)			
Title		Date	
Signature			
SWPPP Responsibilities			
Note: All Contractors involved with Storn			

Certification.

Appendix C

Subcontractor's Certification

"I hereby certify under penalty of law that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the qualified inspector during a site inspection. I also understand that the owner or operator must comply with the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I am aware that there are significant penalties for submitting false information that I do not believe to be true, including the possibility of fine and imprisonment for knowing violations."

Subcontracting Firm Name _			
Address			
Phone	Fax		
Name (please print)			
Title		Date	
Signature			
SWPPP Responsibilities			
Trained Individual Name (plea	se print)		
Title		Date	
Signature			
SWPPP Responsibilities			

Note: All subcontractors involved with Stormwater related activities shall sign a Subcontractor's Certification.

Appendix D: Example Inspection Form

ATION INSPECTIONS Page 1 of 4 EXAMPLE EROSION CONTROL REPORT

PROJECT NO:	PROJECT NAME:		DATE:
MUNICIPALITY:		LOCATION:	
CONTRACTOR:		OWNER:	
DATE OF PREVIOUS INSPEC	CTION:	INSPECTOR'S NAME:	
DATE OF MOST RECENT ST 0.5" OR GREATER:		DATE OF INSPECTION:	
LAST RAIN EVENT:		DEPTH:	
WEATHER:		TEMPERATURE:	°F
SPECIAL NOTES:			
EROSION CONTROL CHEC	CKLIST		
ADDITIONAL ACTION REQUIR	RED BY PROJECT MA	ANAGER OR PROJECT ENGIN	EER YES NO
PHOTOS OR SKETCHES ATTA	CHED	ADDITIONAL REMARKS ATT	ACHED

Inspector (print name)

Inspection Date

Qualified Professional (print name)

Qualified Professional Signature

The above signed acknowledges that, to the best of his/her knowledge, all information provided on the forms is accurate and complete.

Maintaining Water Quality

Yes No NA

- \Box \Box Is there an increase in turbidity causing a substantial visible contrast to natural conditions?
- \Box \Box Is there residue from oil and floating substances, visible oil film, or globules of grease?
- \Box \Box All disturbance is within the limits of the approved plans.
- □ □ □ Have receiving lake/bay, stream, and/or wetland been impacted by silt from project?

Housekeeping

1. General Site Conditions

Yes No NA

- \Box \Box Is construction site litter and debris appropriately managed?
- □ □ □ Are facilities and equipment necessary for implementation of erosion and sediment control in working order and/or properly maintained?
- \Box \Box \Box Is construction impacting the adjacent properties?
- \Box \Box Is dust adequately controlled?

2. Temporary Stream Crossing

Yes No NA

- □ □ □ Maximum diameter pipes necessary to span creek without dredging are installed.
- □ □ □ Installed non-woven geotextile fabric beneath approaches
- \Box \Box Is fill composed of aggregate (no earth or soil)?
- □ □ □ Rock on approaches is clean enough to remove mud from vehicles & prevent sediment from entering stream during high flow.

Runoff Control Practices

1. Excavation Dewatering

Yes No NA

- □ □ □ Upstream and downstream berms (sandbags, inflatable damns, etc.) are installed per plan.
- \Box \Box Clean water from upstream pool is being pumped to the downstream pool.
- □ □ □ Sediment laden water from work area is being discharged to a silt-trapping device.
- \Box \Box Constructed upstream berm with one-foot minimum freeboard.

2. Level Spreader

Yes No NA

- \Box \Box \Box Installed per plan.
- □ □ □ Constructed on undisturbed soil, not on fill, receiving only clear, non-sediment laden flow.
- \Box \Box Flow sheets out of level spreader without erosion on downstream edge.

3. Interceptor Dikes and Swales

Yes No NA

- \Box \Box Installed per plan with minimum side slopes 2H:1V or flatter.
- \Box \Box Stabilized by geotextile fabric, seed, or mulch with no erosion occuring.
- □ □ □ Sediment-laden runoff directed to sediment trapping structure.

4. Stone Check Dam

Yes No NA

- \Box \Box Is channel stable? (flow is not eroding soil underneath or around the structure).
- \Box \Box Check is in good condition (rocks in place and no permanent pools behind the structure).
- \Box \Box Has accumulated sediment been removed?
- 5. Rock Outlet Protection

Yes No NA

- \Box \Box Installed per plan.
- \Box \Box \Box Installed concurrently with pipe installation.

Soil Stabilization

1. Topsoil and Spoil Stockpiles

Yes No NA

 \Box \Box Stockpiles are stabilized with vegetation and/or mulch.

 \Box \Box Sediment control is installed at the toe of the slope.

2. Revegetation

Yes No NA

- \Box \Box Temporary seedings and mulch have been applied to idle areas.
- \Box \Box 4 inches minimum of topsoil has been applied under permanent seedings

Sediment Control Practices

1. Stabilized Construction Entrance

Yes No NA

- \Box \Box \Box Stone is clean enough to effectively remove mud from vehicles.
- \Box \Box Installed per standards and specifications?
- \Box \Box \Box Does all traffic use the stabilized entrance to enter and leave the site?
- \Box \Box Is adequate drainage provided to prevent ponding at entrance?

2. Silt Fence

- Yes No NA
- \Box \Box Installed on Contour, 10 feet from toe of slope (not across conveyance channels).
- \Box \Box Joints constructed by wrapping the two ends together for continuous support.
- \Box \Box Fabric buried 6 inches minimum.
- \square \square Posts are stable, fabric is tight and without rips or frayed areas.

Sediment accumulation is ____% of design capacity.

Page 4 of 4

3. Storm Drain Inlet Protection (Use for Stone & Block; Filter Fabric; Curb; or, Excavated practices) Yes No NA

- □ □ □ Installed concrete blocks lengthwise so open ends face outward, not upward.
- \square \square \square Place wire screen between No. 3 crushed stone and concrete blocks.
- \Box \Box \Box Drainage area is 1 acre or less.
- \Box \Box \Box Excavated area is 900 cubic feet.
- \Box \Box \Box Excavated side slopes should be 2:1.
- \square \square \square 2" x 4" frame is constructed and structurally sound.
- \square \square Posts 3-foot maximum spacing between posts.
- □ □ □ Fabric is embedded 1 to 1.5 feet below ground and secured to frame/posts with staples at max 8-inch spacing.
- $\hfill\square$ $\hfill\square$ \hfill Posts are stable, fabric is tight and without rips or frayed areas.

Sediment accumulation is ____% of design capacity.

4. Temporary Sediment Trap

Yes No NA

- \Box \Box Outlet structure is constructed per the approved plan or drawing.
- \Box \Box \Box Geotextile fabric has been placed beneath rock fill.

Sediment accumulation is ____% of design capacity.

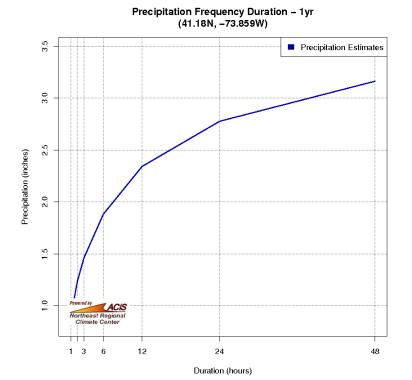
5. Temporary Sediment Basin

Yes No NA

- \square \square \square Basin and outlet structure constructed per the approved plan.
- \Box \Box Basin side slopes are stablized with seed/mulch.
- □ □ □ Drainage structure is flushed and basin surface restored upon removal of sediment basin facility.

Sediment accumulation is ____% of design capacity.

Appendix E: Design Calculations



Precipitation Frequency Duration Curve

3/25/2021

20*

21*

	21		Ζ.	0/			
	22*		2.	70			
	23*		2.	74			
- F	24		2.	78			
	25*		2.	.79			
	26*		2.	81			
	27*		2.	83			
	28*		2.	84			
	29*		2.	86			
	30*		2.	87			
	31*		2.	89			
	32*		2.	91			
	33*		2.	92			
	34*		2.	94			
	35*		2.	95			
	36*		2.	97			
	37*		2.	99			
	38*		3.	00			
	39*		3.	02			
	40*		3.	03			
	41*		3.	05			
	42*		3.	07			
	43*		3.	08			
	44*		3.	10			
	45*		3.	11			
	46*		3.	13			
	47*		3.	15			
	48*		3.	16			
	*values	for	noted	rows	are	estimates	

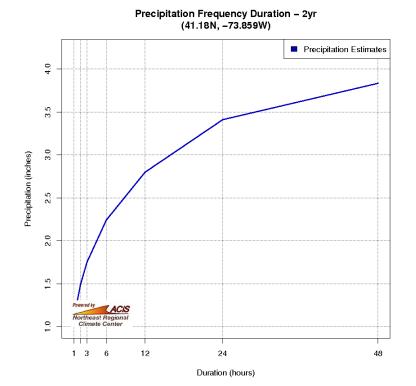
precip.eas.cornell.edu/data.php?1616717333971

varaes for noted fows are estimat

2.63

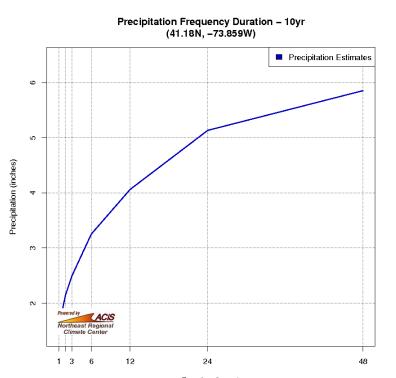
2.67

Time (hours)	Estimate (inches)
1	0.90
2	1.24
3	1.46
4*	1.60
5*	1.74
6	1.88
7*	1.96
8*	2.04
9*	2.11
10*	2.19
11*	2.27
12	2.34
13*	2.38
14*	2.41
15*	2.45
16*	2.49
17*	2.52
18*	2.56
19*	2.60


2/2

Precipitation Frequency Duration Curve

3/25/2021


Precipitation Frequency Duration Curve

						Precip
20*		3.	21			
21*		3.	26			
22*		3.	31			
23*		3.	36			
24			41			
25*		3.	43			
26*		З.	45			
27*		3.	46			
28*		3.	48			
29*		3.	50			
30*		3.	52			
31*		З.	53			
32*		3.	55			
33*		3.	57			
34*		3.	59			
35*		3.	60			
36*		3.	62			
37*		3.	64			
38*		З.	66			
39*		3.	68			
40*		3.	69			
41*		3.	71			
42*		3.	73			
43*		З.	75			
44*		3.	76			
45*		3.	78			
46*		3.	80			
47*		3.	82			
48*		з.	83			
*values	for	noted	rows	are	estima	ates

Time (hours)	Estimate (inches)
1	1.10
2	1.49
3	1.75
4*	1.91
5*	2.08
6	2.24
7*	2.34
8*	2.43
9*	2.52
10*	2.61
11*	2.71
12	2.80
13*	2.85
14*	2.90
15*	2.95
16*	3.00
17*	3.05
18*	3.11
19*	3.16

precip.eas.cornell.edu/data.php?1616717367504

Duration (hours)

Time (hours)	Estimate (inches)
. ,	
1	1.57
2	2.14
3	2.49
4*	2.75
5*	3.00
6	3.25
7*	3.39
8*	3.52
9*	3.66
10*	3.79
11*	3.93
12	4.06
13*	4.15
14*	4.24
15*	4.33
16*	4.42
17*	4.51
18*	4.60
19*	4.69

3/25/2021

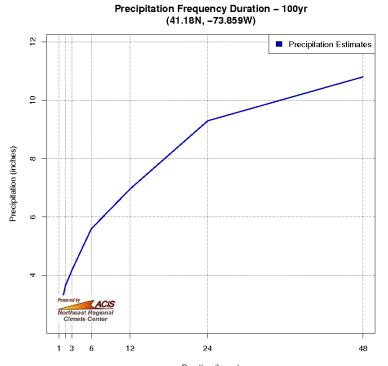
|--|--|--|

3/25/2021

20*	4.78
21*	4.87
22*	4.96
23*	5.05
24	5.14
25*	5.17
26*	5.20
27*	5.23
28*	5.26
29*	5.29
30*	5.32
31*	5.35
32*	5.38
33*	5.41
34*	5.44
35*	5.47
36*	5.50
37*	5.53
38*	5.56
39*	5.59
40*	5.62
41*	5.65
42*	5.68
43*	5.71
44*	5.74
45*	5.77
46*	5.80
47*	5.83
48*	5.86

48* 5.86 *values for noted rows are estimates

1/2


Precipitation Frequency Duration Curve

Precipitation Frequency Duration Curve

3/25/2021

Precipitation Frequency Duration Curve

20*		8	.52		
21*		8	.71		
22*		8	.90		
 23*		9	10		
24		9	.29		
25*		9	.36		
26*		9	.42		
27*		9	.48		
28*		9	.55		
29*		9	.61		
30*		9	.67		
31*		9	.73		
32*		9	.80		
33*		9	.86		
34*		9	.92		
35*		9	.98		
36*		10	0.05		
37*		10	9.11		
38*		10	9.17		
39*		10	9.24		
40*		10	0.30		
41*		10	0.36		
42*		16	9.42		
43*		16	9.49		
44*		16	0.55		
45*		16	9.61		
46*		16	9.67		
47*		16	9.74		
48*		16	0.80		
*values	for	noted	rows	are	estimates

Duration (hours)

Time (hours)	Estimate (inches)
1	2.65
2	3.64
3	4.17
4*	4.64
5*	5.12
6	5.59
7*	5.82
8*	6.05
9*	6.27
10*	6.50
11*	6.73
12	6.96
13*	7.15
14*	7.35
15*	7.54
16*	7.74
17*	7.93
18*	8.13
19*	8.32

Total Required Water Quality Volume Calculation Worksheet

Is this project subj	ect to Chapter 10 o	f the NYS Desig	n Manual (i.e. WQv	is equal to post-d	evelopment 1	year runoff				
volume)?							по			
Design Point(s):	DP-1			Manually enter the information below.						
P=	1.50	inch		Munuu	ing enter the h	njormation b	elow.			
Breakdown of Subcatchments										
Subcatchment Number	Subcatchment Model Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	₩Qv (ft ³)	Description			
1	201	0.22	0.09	40%	0.41	486	Underground Infiltration System			
2	202	0.03	0.03	100%	0.95	167	Underground Infiltration System			
3	203	0.03	0.03	100%	0.95	167	Underground Infiltration System			
4	301	3.33	1.08	32%	0.34	6,205	Infiltration Basin			
5										
6										
7										
8										
9										
10										
Sub	total	3.61	1.23	34%	0.36	7,025	Subtotal 1			
То	otal	3.61	1.23	34% 0.36 7,025 Initial V						

Technique	Total Contributing Area	Contributing Impervious Area	Notes	
	(Acre)	(Acre)		
Conservation of Natural Areas	0.00	0.00	minimum 10,000 sf	
Riparian Buffers	0.00	0.00	maximum contributing length 75 feet to 150 feet	
Filter Strips	0.00	0.00		
Tree Planting	0.00	0.00	Up to 100 sf directly connected	
Total	0.00	0.00		

Recalculate wQv a	inter application o	f Area Reduction T	echniques		
	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Runoff Coefficient Rv	WQv (ft ^³)
Initial WQv	3.61	1.23	34%	0.36	7,025
Subtract Area	0.00	0.00			
WQv adjusted after Area Reductions	3.61	1.23	34%	0.36	7,025
Disconnection of Rooftops		0.00			
Adjusted WQv after Area Reduction and Rooftop Disconnect	3.61	1.23	34%	0.36	7,025
WQv reduced by Area Reduction techniques					0

Subcatchment Summary Table Worksheet

			All Subcatch	nments			
Subcatchment	Subcatchment Model	Total Area	Impervious Cover	Percent Impervious	Runoff Coefficient	WQv	Description
		(Acres)	(Acres)	%	Rv	(ft ³)	
1	201	0.22	0.09	0.40	0.41	486	Underground Infiltration System
2	202	0.03	0.03	1.00	0.95	167	Underground Infiltration System
3	203	0.03	0.03	1.00	0.95	167	Underground Infiltration System
4	301	3.33	1.08	0.32	0.34	6,205	Infiltration Basin
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							

	Runoff Reduction Vo	olume a	nd Treated Vo	lumes		
	Runoff Reduction Techniques/Standard SMPs		Total Contributing Area (acres)	Total Contributing Impervious Area (acres)	WQv Reduced (RRv) cf	WQv Treated cf
	Conservation of Natural Areas	RR-1	0.00	0.00		
ion	Sheet flow to Riparian Buffers		0.00	0.00		
Area ductio	Sheet flow to Filter Strips	RR-2	0.00	0.00		
Area Reduction	Tree Planting/Tree Pit	RR-3	0.00	0.00		
	Disconnection of Rooftop Runoff	RR-4		0.00		
	Vegetated Swale	RR-5	0.00	0.00	0	
tio	Rain Garden	RR-6	0.00	0.00	0	
quc	Stormwater Planter	RR-7	0.00	0.00	0	
Re	Rain Barrel/Cistern	RR-8	0.00	0.00	0	
Volume Reduction	Porous Pavement	RR-9	0.00	0.00	0	
olu	Green Roof (Intensive)	RR-10	0.00	0.00	0	
>	Green Roof (Extensive)	KK-10	0.00	0.00	0	
	Infiltration Trench	I-1	0.00	0.00	0	0
1Ps city	Infiltration Basin	I-2	3.33	1.08	6,205	0
SN	Dry Well	I-3	0.00	0.00	0	0
Standard SMPs w/RRv Capacity	Underground Infiltration System	I-4	0.28	0.15	820	0
RR	Bioretention	F-5	0.00	0.00	0	0
Sta w/I	Infiltration Bioretention	1-5	0.00	0.00	0	0
	Dry swale	0-1	0.00	0.00		0
	Micropool Extended Detention Pond	P-1	0.00	0.00		0
	Wet Pond	P-2	0.00	0.00		0
	Wet Extended Detention Pond	P-3	0.00	0.00		0
	Multiple Pond system	P-4	0.00	0.00		0
S	Pocket Pond	P-5	0.00	0.00		0
SMPs	Surface Sand Filter	F-1	0.00	0.00		0
	Underground Sand Filter	F-2	0.00	0.00		0
Standard	Perimeter Sand Filter	F-3	0.00	0.00		0
itar	Organic Filter	F-4	0.00	0.00		0
0	Shallow Wetland	W-1	0.00	0.00		0
	Extended Detention Shallow Wetland	W-2	0.00	0.00		0
	Pond/Wetland System	W-3	0.00	0.00		0
	Pocket Wetland	W-4	0.00	0.00		0
	Wet Swale	0-2	0.00	0.00		0
	Totals by Area Reduction		0.00	0.00	0	
	Totals by Volume Reduction		0.00	0.00	0	
	Totals by Standard SMP w/RRV		3.61	1.23	7,025	0
	Totals by Standard SMP		0.00	0.00		0
	Totals (Area + Volume + all SMPs)	\rightarrow	3.61	1.23	7,025	0

Runoff Reduction Summary Table Worksheet

Minimum Runoff Reduction Volume Worksheet

	Ν	/inimum P	unoff Redu	tion Volue	ne			
1 Construction		-						
					e total water quality volume due to			
			•	-	ious areas to a runoff reduction			
technique or standard stormwater management practice with runoff reduction volume capacity								
unless infeasible.								
2. In no case shall the runoff reduction achieved from the newly constructed impervious areas be less than the minimum runoff reduction (RRv _{min}).								
3. The minimum runoff reduction volume is calculated as follows:								
		$P * \overline{R}v * J$	Aic * S					
	RRv _{min} =	$=\frac{P*\overline{R}v*}{12}$						
Where:		12						
	RRv min = Minim	num runoff	reduction re	equired from	m impervious area			
	$\bar{R}v = 0.05 + 0.00$							
	Aic = Total area			•				
	S = Hydrologic S				or			
	5 – Hydrologie S		pecific neur					
		Enter the	Soils Data f	or the site				
Soil Group	Acres	S						
A	0.00	55%	(new impe	rvious area	i in Type A Soils)			
В	0.55	40%	(new impe	rvious area	i in Type B Soils)			
С	0.17	30%	(new impe	rvious area	i in Type C Soils)			
D	0.51	20%	(new impe	rvious area	i in Type D Soils)			
Total Area	1.23							
		Calculat	e the Minin	num RRv				
Soil Group Speific	Reduction Facto	or (S)	0.30		(weighted average)			
Total Area of New	Impervious Cov	er (Aic)	1.23	acre				
Precipitation (P)			1.50	in				
Rv			0.95					
Minimum RRv			1,932	ft3	(P * Rv x Aic * S)/12			
			0.04	af				

Notice of Intent Questions Worksheet

#	NOI Question	Reporte	d Value	
			cf	af
28	Total Water Quality Volume (WQv) Required		7,025	0.161
30	Total RRV Provided		7,025	0.161
31	Is RRv Provided ≥WQv Required?		Ye	S
32	Minimum RRv		1,932	0.044
32a	Is RRv Provided ≥ Minimum RRv Required?	Conditions Met		
33a	Total WQv Treated	0	0.000	
34	Sum of Volume Reduced & Treated	7,025	0.161	
35	Is Sum RRv Provided and WQv Provided ≥WQv Required?	Yes	Conditions Met	
	Apply Peak Flow Attenuation			
		-	af	af
36	Channel Protection	Срv	0.200	0.397
			cfs	cfs
37	Overbank	Qp	17.01	16.74
37	Extreme Flood Control	Qf	43.74	39.80
	Are Quantity Control requirements met?	yes	Plan Comple	eted

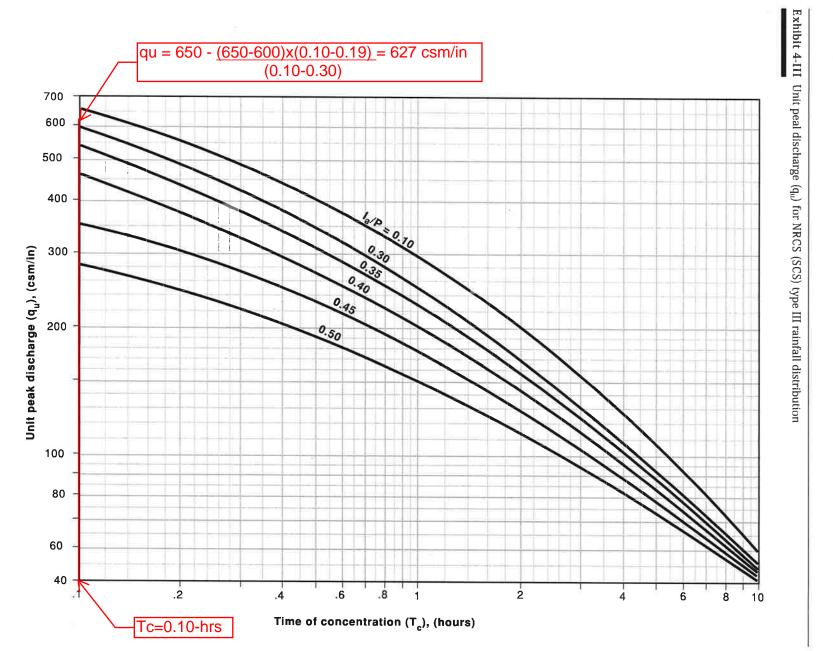
Infiltration Basin Worksheet

Design Point(s):	DP-1	-							
		Enter Si	te Data For D	rainage Area	to be Treated	by Practice	-		
Subcatchment Number	Subcatchment Model Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Precipitation (in)	Description	
4	301	3.33	1.08	0.32	0.34	6,205	1.50	Infiltration Basin	
Enter Impervious A Disconnection of R	•		0.00	32%	0.34	6,205	6,205 <pre></pre> 6,205 Disconnected Rooftops		
Enter the portion o	of the WQv that is	not reduced	for all practice	s routed to th	is practice.	0	ft ³		
Does the contribu	ting area exceed	5 acres?	no						
		_		Design Eleme		_			
		P	Pretreatment	-					
Infiltration Rate				4.10	in/hour	Okay 25% minimu			
Pretreatment Sizing				50	% WQv	50% if >2 in/hr; 100% if >5in/hour			
Pretreatment Req	uired Volume			3,102	ft ³				
Pretreatment Prov	vided			3,102	ft ³				
Pretreatment Tec	nniques utilized			Other	ther Hydrodynamic separator				
Design Volume		6,205	ft ³	WQv					
Basal Area Required		1,551	ft ²	Infiltration p the floor of e		be designed t	o exfiltrate the en	tire WQv through	
Basal Area Provided		2,750	ft ²						
Design Depth		4.00	ft						
Volume Provided		11,000	ft ³	Storage Volu pretreatmen		in infiltration	basin area (not in	ncluding	
Sizing √		ОК		The infiltration basin must provide storage equal to or greater than the WQv of the contributing area.				eater than the WQv	
	•		Deter	mine Runoff	Reduction				
Runoff Reduction			6,205	ft ³	100% of the is smaller	storage prov	ided in the basin	or WQv, whichever	
Volume Treated			0	ft ³	This is the po	ortion of the	WQv that is not r	educed/infiltrated	

Underground Infiltration System Worksheet

Design Point(s):	DP-1	-							
		Enter Sit	te Data For Dr	ainage Area	to be Treated	by Practice			
Subcatchment Number	Subcatchment Model Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Precipitation (in)	Description	
1	201	0.22	0.09	0.40	0.41	486	1.50	Underground Infiltration System	
Enter Impervious A of Rooftops	rea Reduced by Di	isconnection	0.00	40%	0.41	486	< <wqv ad<br="" after="">Disconnected Ro</wqv>		
Enter the portion o	f the WQv that is i	not reduced f	or all practices	routed to this	s practice.	0	ft ³		
	Design Elements								
		Р	retreatment	Techniques to	Prevent Clo	gging			
Infiltration Rate				4.10	in/hour	Okay	ау		
Pretreatment Sizin	Pretreatment Sizing				% WQv	50% if >2 in/	25% minimum; 50% if >2 in/hr; 100% if >5in/hour		
Pretreatment Requ	uired Volume			243	ft ³				
Pretreatment Prov	vided			320	ft ³				
Pretreatment Tech	nniques utilized			Other Isolator row					
			Size	An Infiltratio	n Basin				
Design Volume		486	ft ³	WQv					
Volume Provided		589	ft ³	Storage Volu pretreatmen	•	in undergrour	d infiltration sys	tem (not including	
Sizing √		ОК		-	ound infiltrati v of the contr		st provide storag	e equal to or greater	
			Deteri	mine Runoff I	Reduction				
Runoff Reduction			486	ft ³	100% of the is smaller	storage provi	ded in the basin	or WQv, whichever	
Volume Treated	/olume Treated $0 ext{ ft}^3$ This is the portion of the WQv that is not reduced/infiltree for the treated $1 ext{ ft}^3$ (the treated for the treated for						educed/infiltrated		

Underground Infiltration System Worksheet


Design Point(s):										
		Enter Sit	te Data For Dr	ainage Area	to be Treated	by Practice				
Subcatchment Number	Subcatchment Model Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Precipitation (in)	Description		
2	202	0.03	0.03	1.00	0.95	167	1.50	Underground Infiltration System		
Enter Impervious A of Rooftops	rea Reduced by D	isconnection	0.00	100%	0.95	167	< <wqv ad<br="" after="">Disconnected Ro</wqv>			
Enter the portion o	f the WQv that is	not reduced f	or all practices	routed to this	s practice.	0	ft ³			
	Design Elements									
		Р	retreatment	Techniques to	Prevent Clo	gging				
Infiltration Rate				4.10	in/hour	Okay	·			
Pretreatment Sizin	Pretreatment Sizing				% WQv	25% minimum; 50% if >2 in/hr; 100% if >5in/hour				
Pretreatment Requ	uired Volume			83	ft ³					
Pretreatment Prov	rided			320	ft ³					
Pretreatment Tech	niques utilized			Other Isolator row						
		-		An Infiltratio	n Basin					
Design Volume		167	ft ³	WQv						
Volume Provided		320	ft ³	Storage Volu pretreatmen		in undergroun	d infiltration sys	tem (not including		
Sizing √		ОК		3	ound infiltration v of the contr	,	st provide storag	e equal to or greater		
	·	•	Deteri	mine Runoff I	Reduction					
Runoff Reduction			167	ft ³	100% of the is smaller	storage provi	ded in the basin	or WQv, whichever		
Volume Treated	me Treated 0 ft ³ This is the portion of the WQv that is not reduced/infilt					educed/infiltrated				

Underground Infiltration System Worksheet

Design Point(s):	DP-1									
Enter Site Data For Drainage Area to be Treated by Practice										
Subcatchment Number	Subcatchment Model Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Precipitation (in)	Description		
3	203	0.03	0.03	1.00	0.95	167	1.50	Underground Infiltration System		
Enter Impervious Area Reduced by Disconnection 0.00			100%	0.95	167 <pre><wqv adjusting="" after="" for<br="">Disconnected Rooftops</wqv></pre>					
Enter the portion o	f the WQv that is	not reduced f	or all practices	routed to this	s practice.	0	ft ³			
Design Elements										
Pretreatment Techniques to Prevent Clogging										
Infiltration Rate	Infiltration Rate			4.10	in/hour	Okay				
Pretreatment Sizing			50	% WQv	25% minimum; 50% if >2 in/hr; 100% if >5in/hour					
Pretreatment Required Volume				83	ft ³					
Pretreatment Provided			320	ft ³						
Pretreatment Techniques utilized			Other		Isolator row					
Size An Infiltration Basin										
Design Volume		167	ft ³	WQv						
Volume Provided		320	ft ³	Storage Volume provided in underground infiltration system (not including pretreatment)						
Sizing √		ОК		The underground infiltration system must provide storage equal to or greater than the WQv of the contributing area.						
Determine Runoff Reduction										
Runoff Reduction 167			ft ³	100% of the storage provided in the basin or WQv, whichever is smaller						
Volume Treated 0			0	ft ³	This is the portion of the WQv that is not reduced/infiltrated					

Channel Protection Volume Worksheet

Design Point(s):							
Channel Protection Volume							
Area	3.61	ас	0.006 sq. miles				
Curve Number (CN)	79						
Precipitation for 1 yr storm (P _{1 yr storm})	2.78	in					
la (200 / CN - 2)	0.54						
Ia / P _{1 yr storm}	0.19						
S (la / 0.2)	2.68						
Time of Concentration	6.00	min	0.100 hours				
Unit peak discharge (q _u)	627	csm/in	from Exhibit 4-III of TR-55				
Ratio of Outflow to Inflow (q _o /q _i)	0.025		from Figure B.1 of Design Manual				
Unit Volume (V _S /V _r)	0.65		$\frac{0.683 - 1.43^{*}(q_{o}/q_{i}) + 1.64^{*}(q_{o}/q_{i})^{2}}{0.804^{*}(q_{o}/q_{i})^{3}}$				
Runoff for 1 yr storm (Q _{1 yr runoff})	1.02	in	$(P_{1yr storm} - 0.2*S)^2 / (P_{1yr storm} + 0.8*S)$				
Channel Protection Volume	8,696	cf	$[((V_s/V_r) * (Q_{1yrrunoff}) * A)/12]*43560$				
Average Release Rate over 24 hours	0.10	cfs					

(210-VI-TR-55, Second Ed., June 1986)

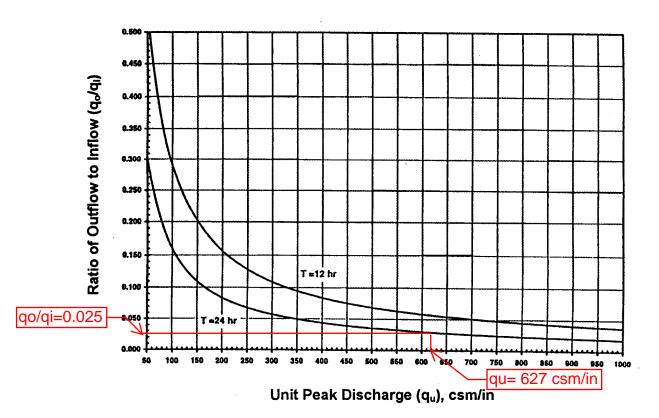
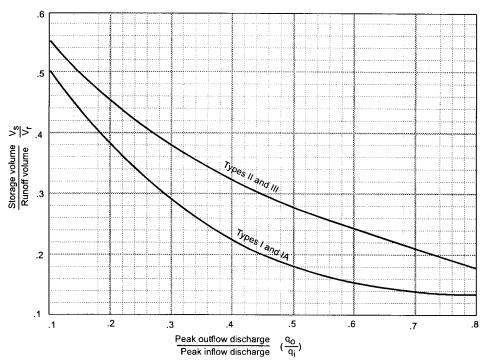
Chapter 4

Graphical Peak Dischage Method

Technical Release 55 Urban Hydrology for Small Watersheds

4-7

While the TR-55 short-cut method reports to incorporate multiple stage structures, experience has shown that an additional 10-15% storage is required when multiple levels of extended detention are provided.

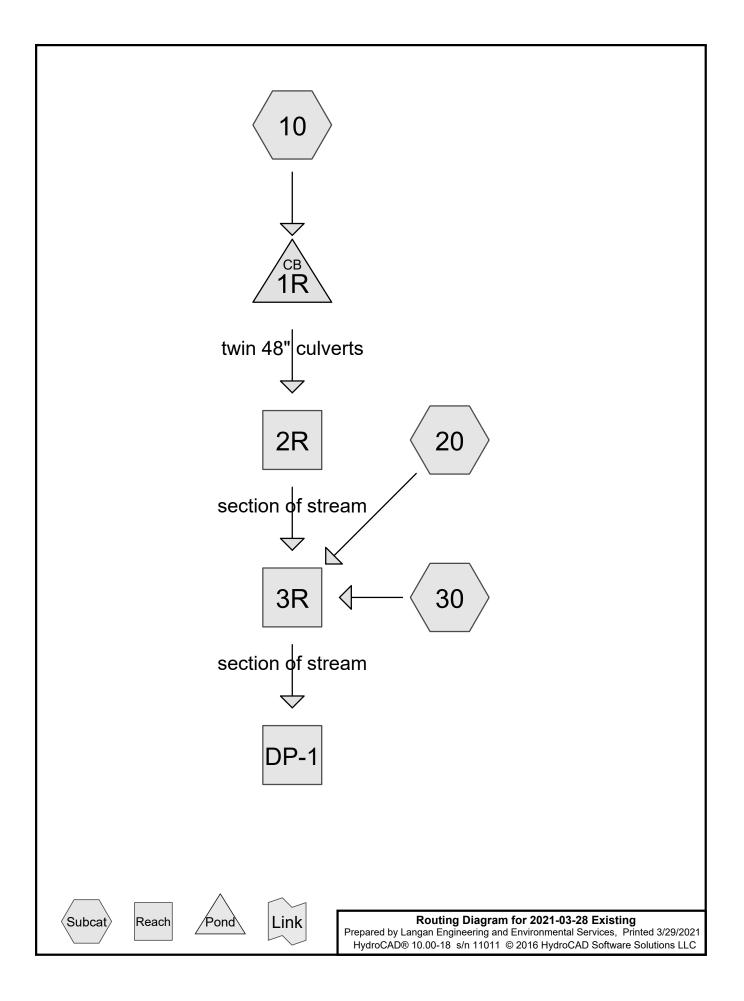

Figure B.1 Detention Time vs. Discharge Ratios (Source: MDE, 2000)

Figure B.2 Approximate Detention Basin Routing For Rainfall Types I, IA, II, and III (Source: NRCS, 1986)

Appendix F: Pre-Development Stormwater Analysis

LANGAN

2021	-03-28	Existing
		EXICUTIN

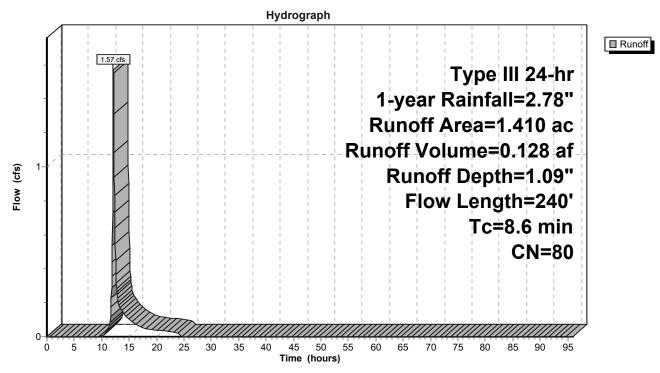
Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

> Time span=0.00-96.00 hrs, dt=0.05 hrs, 1921 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment10:	Runoff Area=1.410 ac 13.48% Impervious Runoff Depth=1.09" Flow Length=240' Tc=8.6 min CN=80 Runoff=1.57 cfs 0.128 af
Subcatchment20:	Runoff Area=2.710 ac 2.21% Impervious Runoff Depth=0.82" Flow Length=339' Tc=10.2 min CN=75 Runoff=2.07 cfs 0.185 af
Subcatchment30:	Runoff Area=3.840 ac 0.00% Impervious Runoff Depth=0.41" Flow Length=377' Tc=10.9 min CN=65 Runoff=1.01 cfs 0.131 af
Reach 2R: section of stream n=0.040	Avg. Flow Depth=0.11' Max Vel=2.85 fps Inflow=1.57 cfs 0.128 af L=169.0' S=0.1230 '/' Capacity=634.20 cfs Outflow=1.54 cfs 0.128 af
Reach 3R: section of stream n=0.040	Avg. Flow Depth=0.18' Max Vel=2.66 fps Inflow=4.57 cfs 0.444 af L=403.0' S=0.0546 '/' Capacity=621.58 cfs Outflow=4.38 cfs 0.444 af
Reach DP-1:	Inflow=4.38 cfs 0.444 af Outflow=4.38 cfs 0.444 af
Pond 1R: twin 48" culverts	Peak Elev=299.96' Inflow=1.57 cfs 0.128 af Outflow=1.57 cfs 0.128 af

Summary for Subcatchment 10:

Runoff = 1.57 cfs @ 12.13 hrs, Volume= 0.128 af, Depth= 1.09"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 1-year Rainfall=2.78"

Area	(ac)	CN De	escription		
0	.110	98 Pa	ved parking	, HSG B	
0	.040	98 Pa	ved parking	, HSG D	
0	.020	85 Gi	avel roads,	HSG B	
0	.010	91 Gi	avel roads,	HSG D	
0	.040	98 Ro	ofs, HSG D		
0	.080	69 50	-75% Grass	cover, Fair	, HSG B
0	.450	84 50	-75% Grass	cover, Fair	, HSG D
0	.170	60 W	oods, Fair, H	ISG B	
0	.490	79 W	oods, Fair, H	ISG D	
1	.410	80 W	eighted Ave	rage	
1	.220	86	.52% Pervic	ous Area	
0	.190	13	.48% Imper	vious Area	
Tc	Length			Capacity	Description
(min)	(feet)) (ft/f	i) (ft/sec)	(cfs)	
5.2	50	0.160	0 0.16		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.41"
3.1	50	0.080	0 0.27		Sheet Flow, B-C
					Grass: Short n= 0.150 P2= 3.41"
0.2	28	0.140	0 2.62		Shallow Concentrated Flow, C-D
					Short Grass Pasture Kv= 7.0 fps
0.1	112	0.044	0 23.98	301.31	Pipe Channel, D-E
					48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'
					n= 0.013 Corrugated PE, smooth interior
8.6	240) Total			

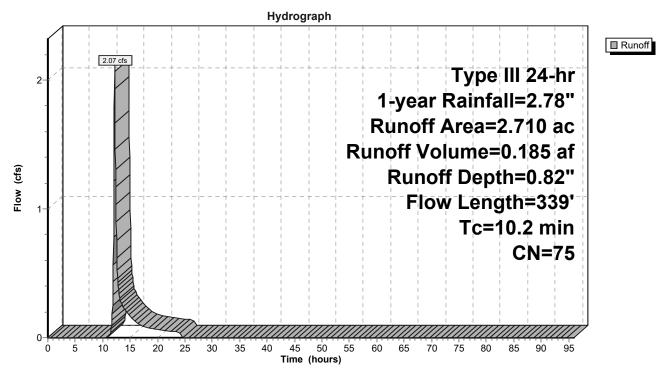
2021-03-28 Existing

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Subcatchment 10:

Summary for Subcatchment 20:

Runoff = 2.07 cfs @ 12.16 hrs, Volume= 0.185 af, Depth= 0.82"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 1-year Rainfall=2.78"

Area	(ac) C	N Des	cription							
0.	020	98 Wat	ater Surface, 0% imp, HSG B							
0.	010	98 Wat	ter Surface, 0% imp, HSG D							
0.	060		ofs, HSG D							
0.	060			cover, Fair						
				cover, Fair	r, HSG D					
			ods, Fair, F							
1.	190	79 Wo	ods, Fair, F	ISG D						
2.	710	75 Wei	ghted Aver	age						
	650		'9% Pervio							
0.	060	2.2	1% Impervi	ous Area						
т.	1	0	\/_l;	0	Description					
Tc (min)	Length	Slope		Capacity	Description					
(min)	(feet)	<u>(ft/ft)</u>	(ft/sec)	(cfs)						
8.1	100	0.2100	0.21		Sheet Flow, A-B					
0.0	455	0 0 0 0 0	0.00		Woods: Light underbrush n= 0.400 P2= 3.41"					
0.8	155	0.3800	3.08		Shallow Concentrated Flow, B-C					
4.0	0.4	0.0400	4 4 0		Woodland Kv= 5.0 fps					
1.3	84	0.0480	1.10		Shallow Concentrated Flow, C-D					
					Woodland Kv= 5.0 fps					
10.2	339	Total								

2021-03-28 Existing

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Subcatchment 20:

Summary for Subcatchment 30:

Runoff = 1.01 cfs @ 12.21 hrs, Volume= 0.131 af, Depth= 0.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 1-year Rainfall=2.78"

Area	(ac) C	N Dese	cription												
	2.540 60 Woods, Fair, HSG B														
	1.260 73 Woods, Fair, HSG C 0.040 98 Water Surface, 0% imp, HSG B														
3.	3.840 65 Weighted Average														
3.	.840	100.	00% Pervi	ous Area											
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descri	ptio	n								
9.1	100	0.1600	0.18		Sheet										
1.1	139	0.1800	2.12		Woods Shallo Woodla	w C	Soncer	ntrate	ed F				P2= 3	3.41"	
0.7	138	0.3900	3.12		Shallo Woodla	w C	concer	ntrate	ed F	low	, C-	D			
10.9	377	Total													
				Subo	atchm	en	f 30.								
					graph										
ſ					<u>.</u>		1			1] r	
		.01 cfs				,	, 	 	 				. <u>.</u>	: L -	Runoff
1-*									_	· . =	1	24	1		
						i i	1-ye	ar	Ra	inf	all:	=2.7	78"	 	
							Runo	off /	Are	a=	:3.8	340	ac		
						Ru	noff	Vo	lun	ήe:	=0.	131	af	1	
(cfs)			1 I I 1 I I 1 I I				Ru	nof	f D)ep	th:	=0.4	11"	 	
Flow (cfs)							F	lov	, V L	en	ġtł	י=3'	77'		
									1		—	.9 n	1		
												CN=			
									 		1		1		

45 50 Time (hours)

55

60 65 70 75 80 85 90

95

5

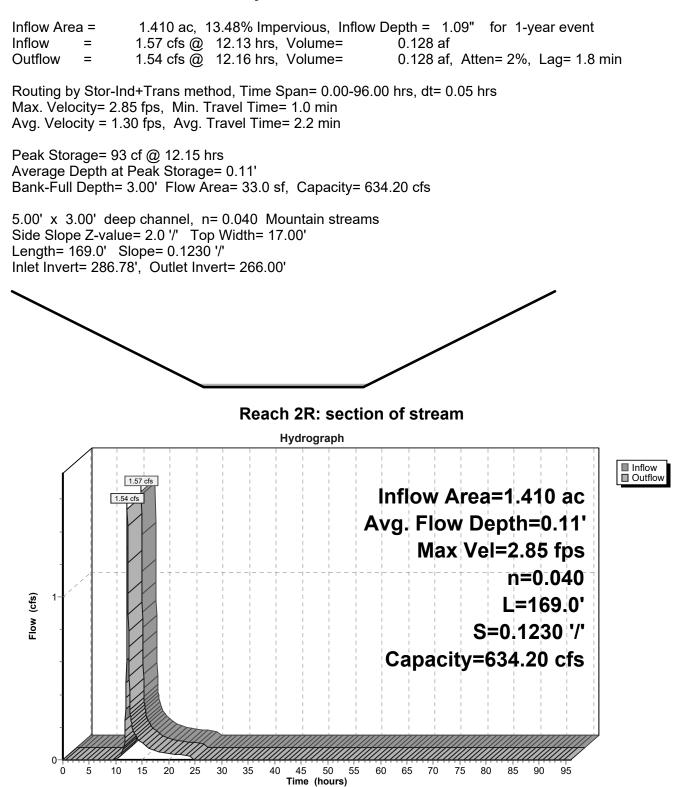
0

10

15

20

25 30


35 40

 2021-03-28 Existing
 Type I

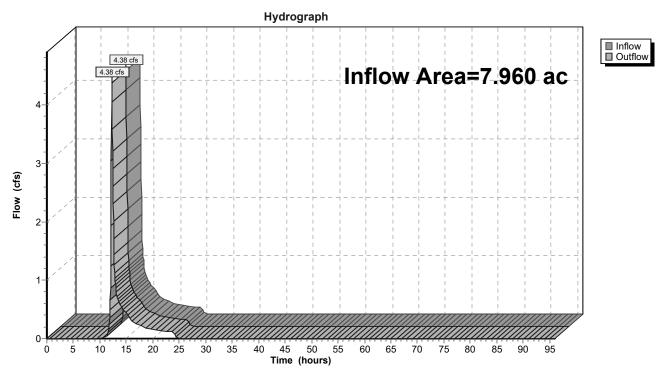
 Prepared by Langan Engineering and Environmental Services
 HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Type III 24-hr 1-year Rainfall=2.78" Printed 3/29/2021 LC Page 8

Summary for Reach 2R: section of stream

2021-03-28 Existing Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Summary for Reach 3R: section of stream


Inflow Area = 7.960 ac. 3.14% Impervious, Inflow Depth = 0.67" for 1-year event Inflow 4.57 cfs @ 12.17 hrs, Volume= 0.444 af = Outflow 4.38 cfs @ 12.25 hrs, Volume= 0.444 af, Atten= 4%, Lag= 4.8 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Max. Velocity= 2.66 fps, Min. Travel Time= 2.5 min Avg. Velocity = 0.99 fps, Avg. Travel Time= 6.8 min Peak Storage= 670 cf @ 12.20 hrs Average Depth at Peak Storage= 0.18' Bank-Full Depth= 3.00' Flow Area= 45.0 sf, Capacity= 621.58 cfs 9.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 21.00' Length= 403.0' Slope= 0.0546 '/' Inlet Invert= 266.00', Outlet Invert= 244.00' Reach 3R: section of stream Hydrograph Inflow □ Outflow 5 4.57 cfs Inflow Area=7.960 ac 4.38 Avg. Flow Depth=0.18' 4 Max Vel=2.66 fps n=0.040 3 Flow (cfs) L=403.0' S=0.0546 '/' 2 Capacity=621.58 cfs 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Time (hours)

2021-03-28 Existing	Type III 24-hr	1-year Rainfall=2.78"
Prepared by Langan Engineering and Environmental Services		Printed 3/29/2021
HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions	LLC	Page 10

Summary for Reach DP-1:

Inflow Area =	= 7.960 ac	, 3.14% Impervious, In	flow Depth = 0.67"	for 1-year event
Inflow =	4.38 cfs (12.25 hrs, Volume=	0.444 af	
Outflow =	4.38 cfs (12.25 hrs, Volume=	0.444 af, Atte	en= 0%, Lag= 0.0 min

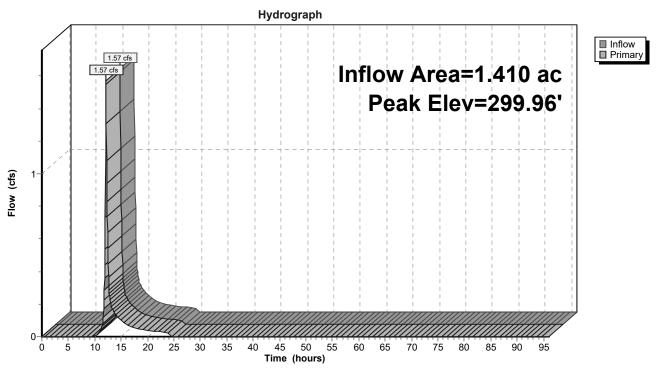
Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Reach DP-1:

Summary for Pond 1R: twin 48" culverts

Page 11

Inflow Area	a = =				epth = 1.09" 0.128 af	for 1-year event
	=	\sim	12.13 hrs, Volu 12.13 hrs, Volu		•••=•••	en= 0%, Lag= 0.0 min
Primary			12.13 hrs, Vol		0.128 af	en= 070, Lag= 0.0 mm
Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs						


Peak Elev= 299.96' @ 12.13 hrs Flood Elev= 316.05'

Device	Routing	Invert	Outlet Devices
#1	Primary	299.55'	48.0" Round Culvert
			L= 182.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 299.55' / 286.78' S= 0.0702 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 12.57 sf
#2	Primary	299.90'	48.0" Round Culvert
	-		L= 180.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 299.90' / 287.92' S= 0.0666 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 12.57 sf

Primary OutFlow Max=1.45 cfs @ 12.13 hrs HW=299.95' (Free Discharge) -1=Culvert (Inlet Controls 1.43 cfs @ 2.16 fps)

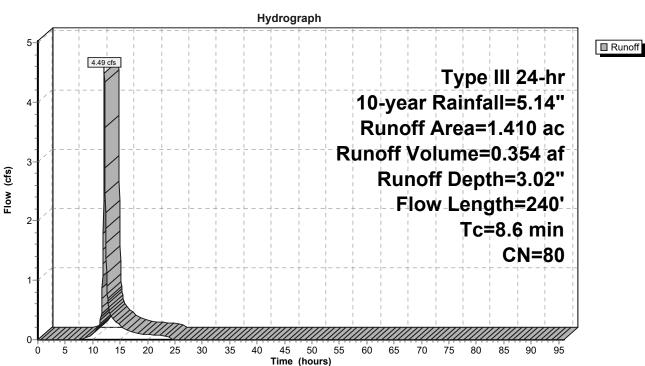
-2=Culvert (Inlet Controls 0.03 cfs @ 0.78 fps)

Pond 1R: twin 48" culverts

Time span=0.00-96.00 hrs, dt=0.05 hrs, 1921 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment10:	Runoff Area=1.410 ac 13.48% Impervious Runoff Depth=3.02" Flow Length=240' Tc=8.6 min CN=80 Runoff=4.49 cfs 0.354 af
Subcatchment20:	Runoff Area=2.710 ac 2.21% Impervious Runoff Depth=2.56" Flow Length=339' Tc=10.2 min CN=75 Runoff=6.98 cfs 0.579 af
Subcatchment30:	Runoff Area=3.840 ac 0.00% Impervious Runoff Depth=1.75" Flow Length=377' Tc=10.9 min CN=65 Runoff=6.32 cfs 0.559 af
Reach 2R: section of stream n=0.040 L=1	Avg. Flow Depth=0.20' Max Vel=4.17 fps Inflow=4.49 cfs 0.354 af 169.0' S=0.1230 '/' Capacity=634.20 cfs Outflow=4.38 cfs 0.354 af
	Avg. Flow Depth=0.40' Max Vel=4.41 fps Inflow=17.63 cfs 1.492 af 03.0' S=0.0546 '/' Capacity=621.58 cfs Outflow=17.01 cfs 1.492 af
Reach DP-1:	Inflow=17.01 cfs 1.492 af Outflow=17.01 cfs 1.492 af
Pond 1R: twin 48" culverts	Peak Elev=300.20' Inflow=4.49 cfs 0.354 af Outflow=4.49 cfs 0.354 af

Summary for Subcatchment 10:


Runoff = 4.49 cfs @ 12.12 hrs, Volume= 0.354 af, Depth= 3.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=5.14"

Area	(ac) C	N Des	cription		
0.	.110	98 Pav	ed parking	, HSG B	
0.	.040	98 Pav	ed parking	, HSG D	
0.	.020	85 Grav	/el roads, l	HSG B	
0.	.010	91 Grav	/el roads, l	HSG D	
0.	.040	98 Roo	fs, HSG D		
0.	.080	69 50-7	'5% Grass	cover, Fair	, HSG B
0.	.450	84 50-7	'5% Grass	cover, Fair	; HSG D
0.	.170	60 Woo	ods, Fair, ⊦	ISG B	
0.	.490	79 Woo	ods, Fair, F	ISG D	
1.	.410	80 Wei	ghted Aver	age	
1.	.220	86.5	2% Pervio	us Area	
0.	.190	13.4	8% Imperv	/ious Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.2	50	0.1600	0.16		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.41"
3.1	50	0.0800	0.27		Sheet Flow, B-C
					Grass: Short n= 0.150 P2= 3.41"
0.2	28	0.1400	2.62		Shallow Concentrated Flow, C-D
					Short Grass Pasture Kv= 7.0 fps
0.1	112	0.0440	23.98	301.31	Pipe Channel, D-E
					48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'
					n= 0.013 Corrugated PE, smooth interior
8.6	240	Total			

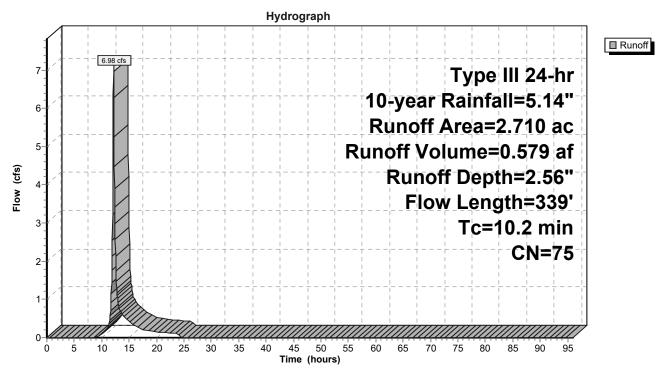
2021-03-28 Existing

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Subcatchment 10:

Summary for Subcatchment 20:

Runoff = 6.98 cfs @ 12.15 hrs, Volume= 0.579 af, Depth= 2.56"

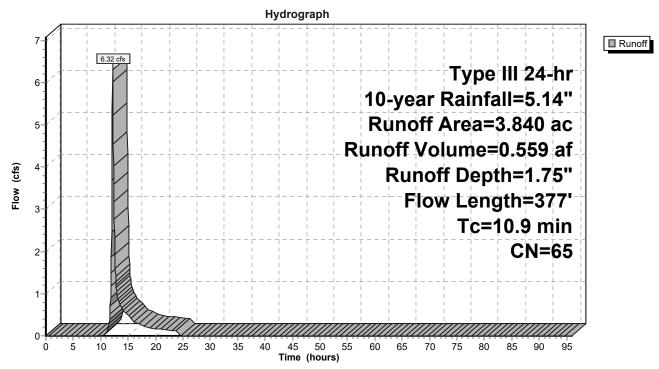

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=5.14"

Area	(ac) C	CN Des	scription		
0.	020	98 Wa	ter Surface	, 0% imp, H	ISG B
0.	010	98 Wa	ter Surface	, 0% imp, H	ISG D
0.	060	98 Roo	ofs, HSG D		
0.	060			cover, Fair	
		84 50-	75% Grass	cover, Fair	r, HSG D
			ods, Fair, F		
1.	190	79 Wo	ods, Fair, F	ISG D	
2.	710	75 We	ighted Avei	age	
	650	97.	79% Pervio	us Area	
0.	060	2.2	1% Impervi	ous Area	
т.	1	01) (- l it -	0	Description
Tc (min)	Length			Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
8.1	100	0.2100	0.21		Sheet Flow, A-B
0.0	455	0 0000	0.00		Woods: Light underbrush n= 0.400 P2= 3.41"
0.8	155	0.3800	3.08		Shallow Concentrated Flow, B-C
1.0	0.4	0 0 4 0 0	1 10		Woodland Kv= 5.0 fps
1.3	84	0.0480	1.10		Shallow Concentrated Flow, C-D
40.0	000	- • •			Woodland Kv= 5.0 fps
10.2	339	Total			

2021-03-28 Existing

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

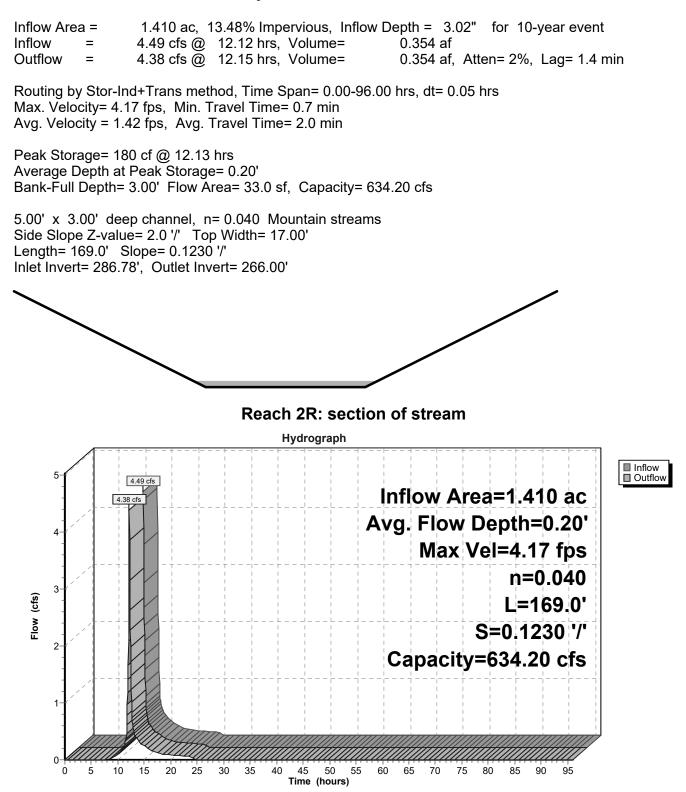
Subcatchment 20:


Summary for Subcatchment 30:

Runoff 6.32 cfs @ 12.16 hrs, Volume= 0.559 af, Depth= 1.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=5.14"

Area	(ac) C	N Des	cription		
2.	540 6	0 Woo	ds, Fair, ⊢	ISG B	
1.	260 7	'3 Woo	ds, Fair, ⊢	ISG C	
0.	040 9	8 Wate	er Surface	, 0% imp, H	ISG B
3.	840 6	5 Weid	phted Aver	ade	
-	840		00% Pervi		
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•
9.1	100	0.1600	0.18		Sheet Flow, A-B
0.1		0.1000	0.10		Woods: Light underbrush n= 0.400 P2= 3.41"
1.1	139	0.1800	2.12		Shallow Concentrated Flow, B-C
		0.1000			Woodland Kv= 5.0 fps
0.7	138	0.3900	3.12		Shallow Concentrated Flow, C-D
0.1		0.0000	0.12		Woodland $Kv=5.0$ fps
10.9	377	Total			
10.5	511	Total			


Subcatchment 30:

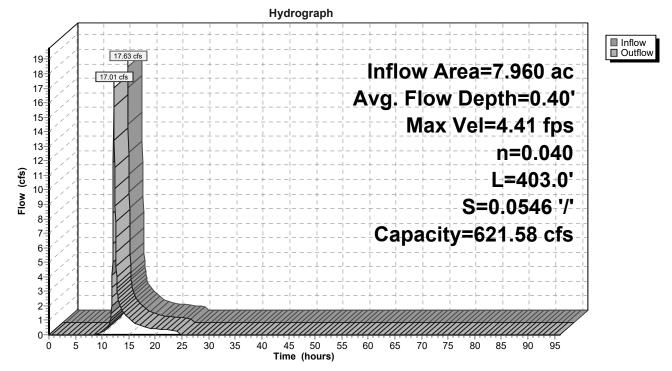
Type III 24-hr 10-year Rainfall=5.14" 2021-03-28 Existing Prepared by Langan Engineering and Environmental Services Printed 3/29/2021 HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Summary for Reach 2R: section of stream

Page 18

Type III 24-hr 10-year Rainfall=5.14" 2021-03-28 Existing Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

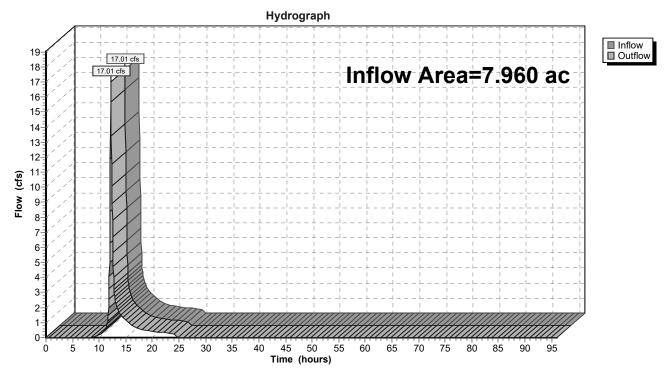

Summary for Reach 3R: section of stream


Inflow Area = 7.960 ac. 3.14% Impervious, Inflow Depth = 2.25" for 10-year event Inflow 17.63 cfs @ 12.15 hrs, Volume= 1.492 af Outflow 17.01 cfs @ 12.20 hrs, Volume= 1.492 af, Atten= 4%, Lag= 2.8 min =

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Max. Velocity= 4.41 fps, Min. Travel Time= 1.5 min Avg. Velocity = 1.30 fps, Avg. Travel Time= 5.2 min

Peak Storage= 1,587 cf @ 12.17 hrs Average Depth at Peak Storage= 0.40' Bank-Full Depth= 3.00' Flow Area= 45.0 sf, Capacity= 621.58 cfs

9.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 21.00' Length= 403.0' Slope= 0.0546 '/' Inlet Invert= 266.00', Outlet Invert= 244.00'



2021-03-28 Existing	Type III 24-hr	10-year Rainfall=5.14"
Prepared by Langan Engineering and Environmental Service	S	Printed 3/29/2021
HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solution	s LLC	Page 20

Summary for Reach DP-1:

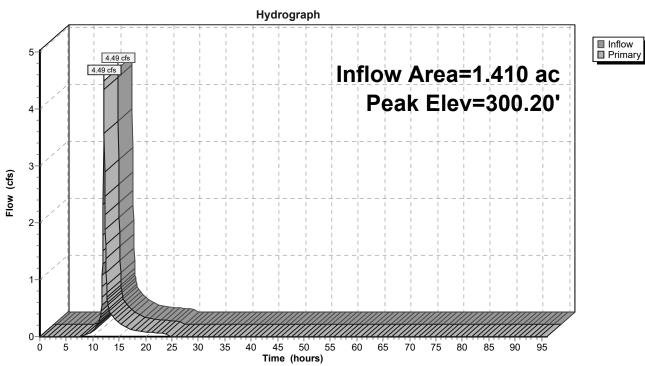
Inflow Area =	7.960 ac,	3.14% Impervious,	Inflow Depth = 2.25"	for 10-year event
Inflow =	17.01 cfs @	12.20 hrs, Volume	= 1.492 af	
Outflow =	17.01 cfs @	12.20 hrs, Volume	= 1.492 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Reach DP-1:

Summary for Pond 1R: twin 48" culverts

Inflow Are	a =	1.410 ac, 13.48% Impervious, Inflow Depth = 3.02" for 10-year event	
Inflow	=	4.49 cfs @ 12.12 hrs, Volume= 0.354 af	
Outflow	=	4.49 cfs @12.12 hrs, Volume=0.354 af, Atten= 0%, Lag= 0.0 min	1
Primary	=	4.49 cfs @ 12.12 hrs, Volume= 0.354 af	


Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 300.20' @ 12.12 hrs Flood Elev= 316.05'

Device	Routing	Invert	Outlet Devices
#1	Primary	299.55'	48.0" Round Culvert
			L= 182.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 299.55' / 286.78' S= 0.0702 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 12.57 sf
#2	Primary	299.90'	48.0" Round Culvert
	2		L= 180.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 299.90' / 287.92' S= 0.0666 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 12.57 sf
			-

Primary OutFlow Max=4.32 cfs @ 12.12 hrs HW=300.19' (Free Discharge) -1=Culvert (Inlet Controls 3.56 cfs @ 2.73 fps)

-2=Culvert (Inlet Controls 0.76 cfs @ 1.84 fps)

Pond 1R: twin 48" culverts

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

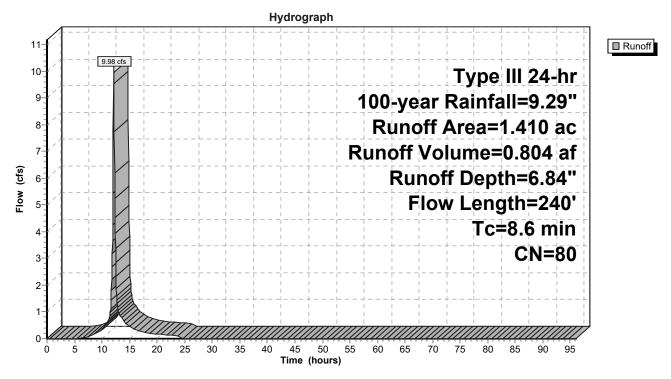
Printed 3/29/2021 Page 22

Time span=0.00-96.00 hrs, dt=0.05 hrs, 1921 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment10:	Runoff Area=1.410 ac 13.48% Impervious Runoff Depth=6.84" Flow Length=240' Tc=8.6 min CN=80 Runoff=9.98 cfs 0.804 af
Subcatchment20:	Runoff Area=2.710 ac 2.21% Impervious Runoff Depth=6.22" Flow Length=339' Tc=10.2 min CN=75 Runoff=16.82 cfs 1.405 af
Subcatchment30:	Runoff Area=3.840 ac 0.00% Impervious Runoff Depth=4.96" Flow Length=377' Tc=10.9 min CN=65 Runoff=18.82 cfs 1.587 af
Reach 2R: section of stream n=0.040 L:	Avg. Flow Depth=0.32' Max Vel=5.51 fps Inflow=9.98 cfs 0.804 af =169.0' S=0.1230 '/' Capacity=634.20 cfs Outflow=9.75 cfs 0.804 af
Reach 3R: section of stream n=0.040 L=4	Avg. Flow Depth=0.70' Max Vel=6.18 fps Inflow=45.29 cfs 3.796 af 403.0' S=0.0546 '/' Capacity=621.58 cfs Outflow=43.74 cfs 3.796 af
Reach DP-1:	Inflow=43.74 cfs 3.796 af Outflow=43.74 cfs 3.796 af
Pond 1R: twin 48" culverts	Peak Elev=300.47' Inflow=9.98 cfs 0.804 af Outflow=9.98 cfs 0.804 af

Summary for Subcatchment 10:

Runoff = 9.98 cfs @ 12.12 hrs, Volume= 0.804 af, Depth= 6.84"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=9.29"

Area	(ac) C	N Des	cription		
0	.110	98 Pave	ed parking	, HSG B	
0	.040	98 Pave	ed parking	, HSG D	
0	.020	85 Grav	/el roads, l	HSG B	
0	.010	91 Grav	/el roads, l	HSG D	
0	.040	98 Roo	fs, HSG D		
0	.080	69 50-7	'5% Grass	cover, Fair	, HSG B
0	.450	84 50-7	'5% Grass	cover, Fair	, HSG D
0	.170	60 Woo	ods, Fair, ⊦	ISG B	
0	.490	79 Woo	ods, Fair, ⊦	ISG D	
1	.410	80 Weig	ghted Aver	age	
1	.220	86.5	2% Pervio	us Area	
0.190 13.48% Impervious Area				/ious Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.2	50	0.1600	0.16		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.41"
3.1	50	0.0800	0.27		Sheet Flow, B-C
					Grass: Short n= 0.150 P2= 3.41"
0.2	28	0.1400	2.62		Shallow Concentrated Flow, C-D
					Short Grass Pasture Kv= 7.0 fps
0.1	112	0.0440	23.98	301.31	Pipe Channel, D-E
					48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'
					n= 0.013 Corrugated PE, smooth interior
8.6	240	Total			

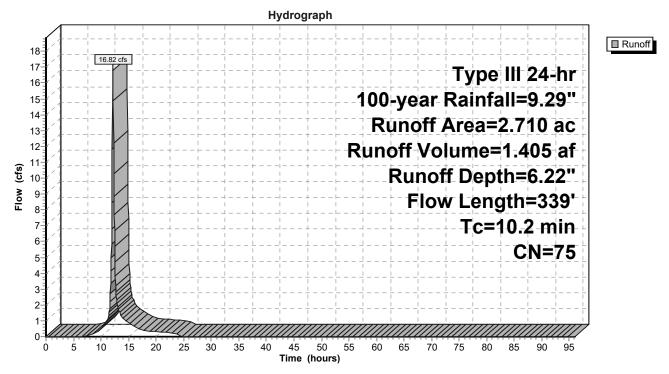
2021-03-28 Existing

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Subcatchment 10:

Summary for Subcatchment 20:

Runoff = 16.82 cfs @ 12.14 hrs, Volume= 1.405 af, Depth= 6.22"

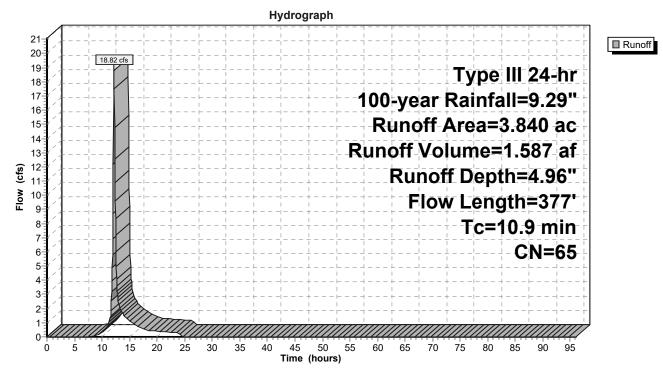

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=9.29"

Area	(ac) C	CN Des	scription		
0.	020	98 Wa	ter Surface	, 0% imp, H	ISG B
0.	010	98 Wa	ter Surface	, 0% imp, H	ISG D
0.	060	98 Roo	ofs, HSG D		
0.	060			cover, Fair	
		84 50-	75% Grass	cover, Fair	r, HSG D
			ods, Fair, F		
1.	190	79 Wo	ods, Fair, F	ISG D	
2.	710	75 We	ighted Avei	age	
	650	97.	79% Pervio	us Area	
0.	060	2.2	1% Impervi	ous Area	
т.	1	01) (- l it -	0	Description
Tc (min)	Length			Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
8.1	100	0.2100	0.21		Sheet Flow, A-B
0.0	455	0 0000	0.00		Woods: Light underbrush n= 0.400 P2= 3.41"
0.8	155	0.3800	3.08		Shallow Concentrated Flow, B-C
1.0	0.4	0 0 4 0 0	1 10		Woodland Kv= 5.0 fps
1.3	84	0.0480	1.10		Shallow Concentrated Flow, C-D
40.0	000	- • •			Woodland Kv= 5.0 fps
10.2	339	Total			

2021-03-28 Existing

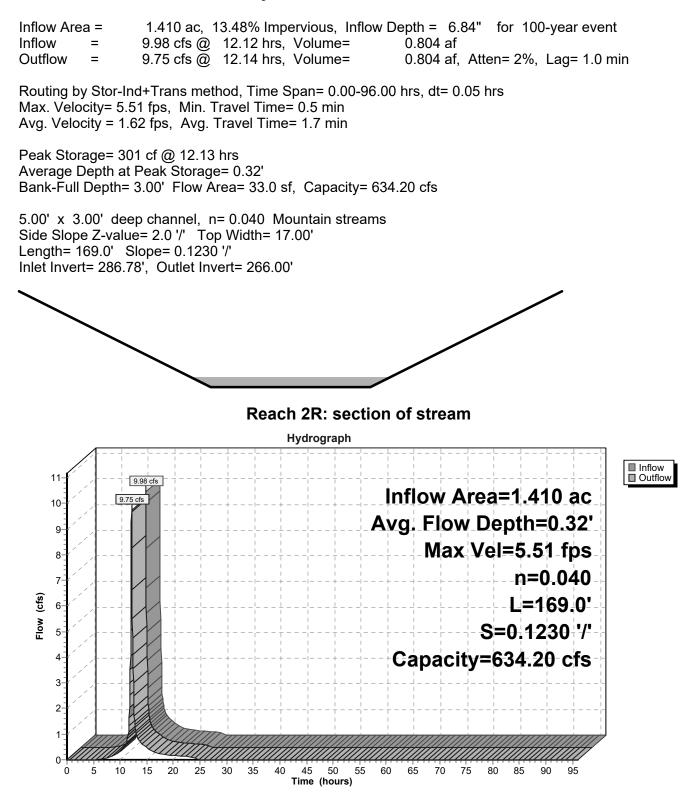
Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Subcatchment 20:


Summary for Subcatchment 30:

Runoff = 18.82 cfs @ 12.16 hrs, Volume= 1.587 af, Depth= 4.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=9.29"


_	Area	(ac) C	N Dese	cription		
	2.	540 6	0 Woo	ods, Fair, ⊢	ISG B	
	1.	260 7	'3 Woo	ods, Fair, F	ISG C	
_	0.	040 9	98 Wate	er Surface	, 0% imp, F	ISG B
	3.	840 6	5 Weig	ghted Aver	age	
	3.	840	100.	00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.1	100	0.1600	0.18		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.41"
	1.1	139	0.1800	2.12		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
	0.7	138	0.3900	3.12		Shallow Concentrated Flow, C-D
_						Woodland Kv= 5.0 fps
	10.9	377	Total			

Subcatchment 30:

2021-03-28 ExistingType III 24-hr100-year Rainfall=9.29"Prepared by Langan Engineering and Environmental ServicesPrinted 3/29/2021HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLCPage 28

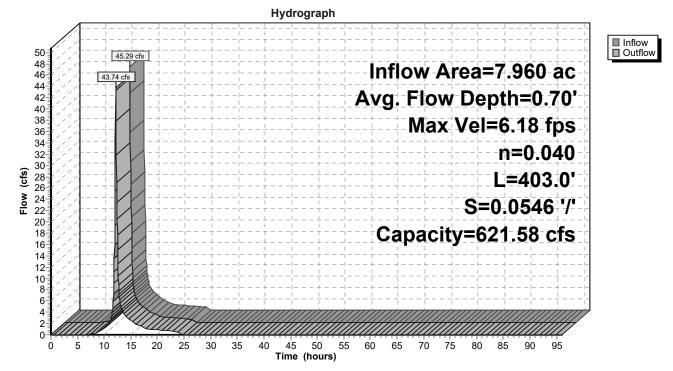
Summary for Reach 2R: section of stream

2021-03-28 ExistingType III 24-hr100-year Rainfall=9.29"Prepared by Langan Engineering and Environmental ServicesPrinted 3/29/2021HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLCPage 29

Summary for Reach 3R: section of stream

 Inflow Area =
 7.960 ac,
 3.14% Impervious, Inflow Depth =
 5.72" for 100-year event

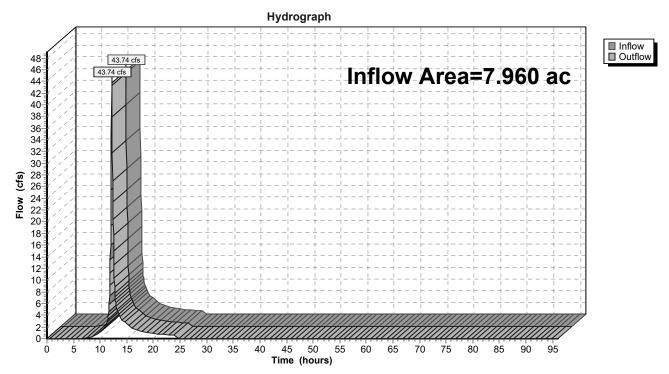
 Inflow =
 45.29 cfs @
 12.15 hrs, Volume=
 3.796 af


 Outflow =
 43.74 cfs @
 12.18 hrs, Volume=
 3.796 af, Atten= 3%, Lag= 1.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Max. Velocity= 6.18 fps, Min. Travel Time= 1.1 min Avg. Velocity = 1.66 fps, Avg. Travel Time= 4.0 min

Peak Storage= 2,942 cf @ 12.16 hrs Average Depth at Peak Storage= 0.70' Bank-Full Depth= 3.00' Flow Area= 45.0 sf, Capacity= 621.58 cfs

9.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 21.00' Length= 403.0' Slope= 0.0546 '/' Inlet Invert= 266.00', Outlet Invert= 244.00'



2021-03-28 Existing	Type III 24-hr	100-year Rainfall=9.29"
Prepared by Langan Engineering and Environmental Servic	es	Printed 3/29/2021
HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solution	ons LLC	Page 30

Summary for Reach DP-1:

Inflow Area	a =	7.960 ac,	3.14% Impervious,	Inflow Depth = 5.	72" for 100-year event
Inflow	=	43.74 cfs @	12.18 hrs, Volume	= 3.796 af	
Outflow	=	43.74 cfs @	12.18 hrs, Volume	= 3.796 af,	Atten= 0%, Lag= 0.0 min

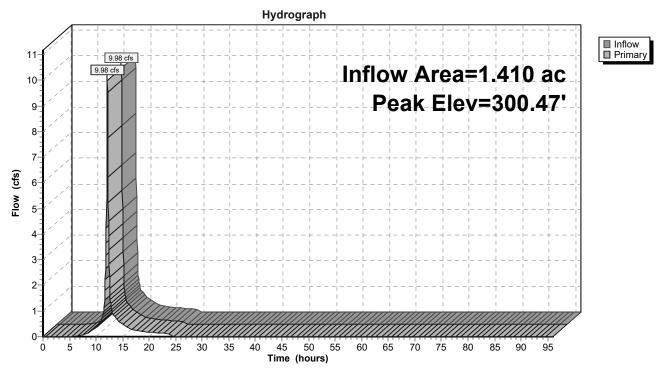
Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Reach DP-1:

Summary for Pond 1R: twin 48" culverts

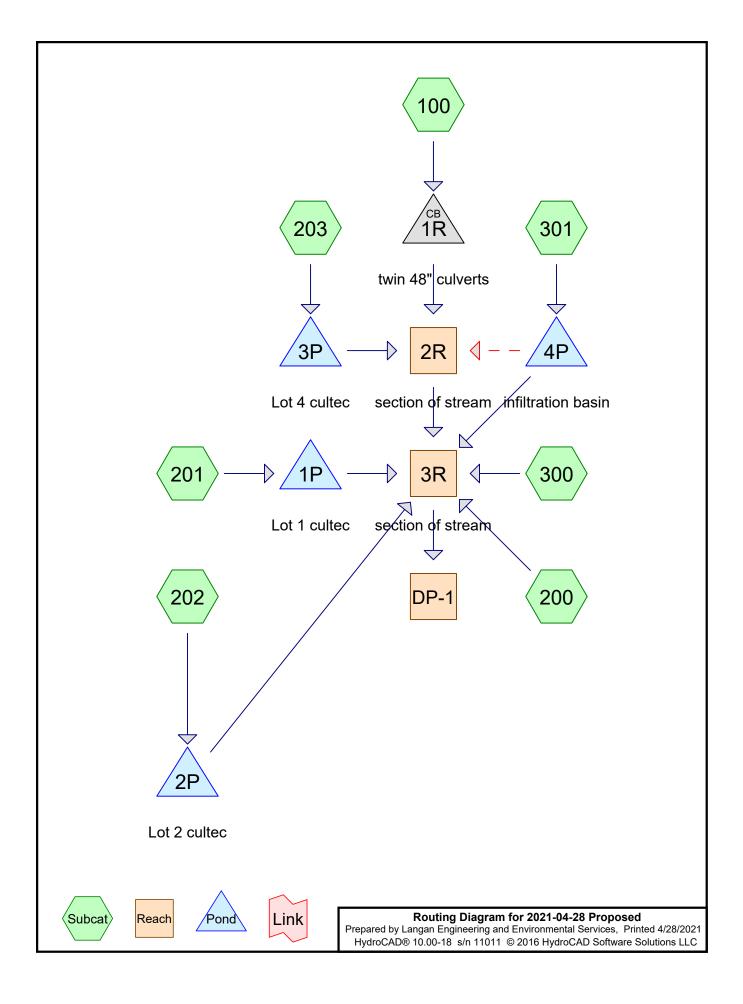
Inflow Area =	1.410 ac, 13.48% Impervious, Inflow I	Depth = 6.84" for 100-year event
Inflow =	9.98 cfs @ 12.12 hrs, Volume=	0.804 af
Outflow =	9.98 cfs @ 12.12 hrs, Volume=	0.804 af, Atten= 0%, Lag= 0.0 min
Primary =	9.98 cfs @ 12.12 hrs, Volume=	0.804 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 300.47' @ 12.12 hrs Flood Elev= 316.05'


Routing	Invert	Outlet Devices
Primary	299.55'	48.0" Round Culvert
		L= 182.0' CPP, square edge headwall, Ke= 0.500
		Inlet / Outlet Invert= 299.55' / 286.78' S= 0.0702 '/' Cc= 0.900
		n= 0.013 Corrugated PE, smooth interior, Flow Area= 12.57 sf
Primary	299.90'	48.0" Round Culvert
		L= 180.0' CPP, square edge headwall, Ke= 0.500
		Inlet / Outlet Invert= 299.90' / 287.92' S= 0.0666 '/' Cc= 0.900
		n= 0.013 Corrugated PE, smooth interior, Flow Area= 12.57 sf
	Primary	Primary 299.55'

Primary OutFlow Max=9.60 cfs @ 12.12 hrs HW=300.46' (Free Discharge)

-1=Culvert (Inlet Controls 6.92 cfs @ 3.24 fps)


2=Culvert (Inlet Controls 2.68 cfs @ 2.54 fps)

Pond 1R: twin 48" culverts

Appendix G: Post-Development Stormwater Analysis

LANGAN

 Type III 24-hr
 1-year Rainfall=2.78"

 Printed
 4/28/2021

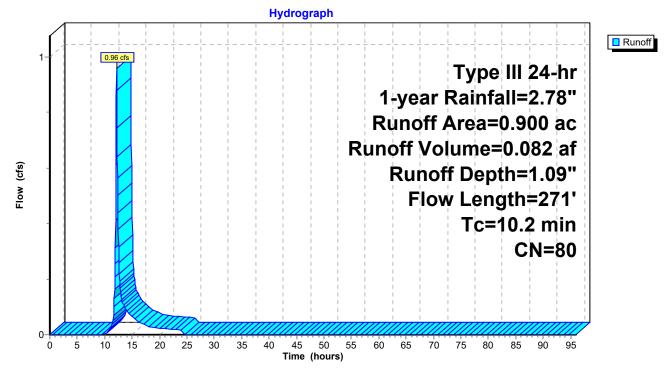
 LLC
 Page 2

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Time span=0.00-96.00 hrs, dt=0.05 hrs, 1921 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment100:	Runoff Area=0.900 ac 21.11% Impervious Runoff Depth=1.09" Flow Length=271' Tc=10.2 min CN=80 Runoff=0.96 cfs 0.082 af
Subcatchment200:	Runoff Area=1.640 ac 1.83% Impervious Runoff Depth=0.87" Flow Length=339' Tc=6.0 min CN=76 Runoff=1.55 cfs 0.119 af
Subcatchment201:	Runoff Area=0.210 ac 38.10% Impervious Runoff Depth=1.55" Tc=6.0 min CN=87 Runoff=0.37 cfs 0.027 af
Subcatchment202:	Runoff Area=0.030 ac 100.00% Impervious Runoff Depth=2.55" Tc=6.0 min CN=98 Runoff=0.08 cfs 0.006 af
Subcatchment203:	Runoff Area=0.030 ac 100.00% Impervious Runoff Depth=2.55" Tc=6.0 min CN=98 Runoff=0.08 cfs 0.006 af
Subcatchment300:	Runoff Area=1.820 ac 0.55% Impervious Runoff Depth=0.38" Flow Length=506' Tc=13.2 min CN=64 Runoff=0.39 cfs 0.057 af
Subcatchment301:	Runoff Area=3.340 ac 32.63% Impervious Runoff Depth=0.97" Tc=6.0 min CN=78 Runoff=3.61 cfs 0.271 af
Reach 2R: section of str	eam Avg. Flow Depth=0.08' Max Vel=2.36 fps Inflow=0.96 cfs 0.082 af n=0.040 L=169.0' S=0.1230 '/' Capacity=634.20 cfs Outflow=0.93 cfs 0.082 af
Reach 3R: section of str	eam Avg. Flow Depth=0.13' Max Vel=2.18 fps Inflow=2.71 cfs 0.297 af n=0.040 L=403.0' S=0.0546 '/' Capacity=621.58 cfs Outflow=2.62 cfs 0.297 af
Reach DP-1:	Inflow=2.62 cfs 0.297 af Outflow=2.62 cfs 0.297 af
Pond 1P: Lot 1 cultec	Peak Elev=301.21' Storage=187 cf Inflow=0.37 cfs 0.027 af Discarded=0.04 cfs 0.020 af Primary=0.24 cfs 0.007 af Outflow=0.28 cfs 0.027 af
Pond 1R: twin 48" culve	rts Peak Elev=299.88' Inflow=0.96 cfs 0.082 af Outflow=0.96 cfs 0.082 af
Pond 2P: Lot 2 cultec	Peak Elev=310.70' Storage=37 cf Inflow=0.08 cfs 0.006 af Discarded=0.03 cfs 0.006 af Primary=0.00 cfs 0.000 af Outflow=0.03 cfs 0.006 af
Pond 3P: Lot 4 cultec	Peak Elev=291.70' Storage=37 cf Inflow=0.08 cfs 0.006 af Discarded=0.03 cfs 0.006 af Primary=0.00 cfs 0.000 af Outflow=0.03 cfs 0.006 af
Pond 4P: infiltration bas Discarded=0.35 cfs 0.240 af	in Peak Elev=295.19' Storage=3,833 cf Inflow=3.61 cfs 0.271 af Primary=0.55 cfs 0.032 af Secondary=0.00 cfs 0.000 af Outflow=0.90 cfs 0.271 af
Total Ru	noff Area = 7.970 ac Runoff Volume = 0.569 af Average Runoff Depth = 0.86

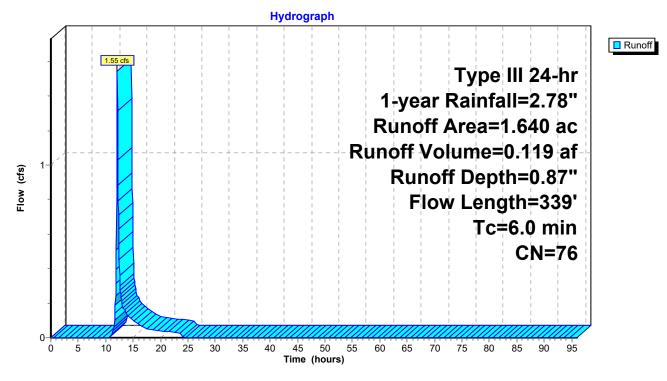
Total Runoff Area = 7.970 ac Runoff Volume = 0.569 af Average Runoff Depth = 0.86" 81.68% Pervious = 6.510 ac 18.32% Impervious = 1.460 ac


Summary for Subcatchment 100:

Runoff = 0.96 cfs @ 12.15 hrs, Volume= 0.082 af, Depth= 1.09"

Area ((ac) (CN D	escription		
0.1	150	98 P	aved parking	, HSG B	
0.0	020	85 G	ravel roads,	HSG B	
0.0	010	91 G	ravel roads,	HSG D	
0.0	040	98 R	oofs, HSG D		
0.1	130	69 5	0-75% Grass	cover, Fair	, HSG B
0.1	130	80 >	75% Grass c	over, Good	, HSG D
0.1	110	60 V	/oods, Fair, I	ISG B	
0.3	310	<u>79 V</u>	/oods, Fair, I	ISG D	
0.9	900	80 V	leighted Ave	rage	
0.1	710	7	8.89% Pervic	ous Area	
0.	190	2	1.11% Imper	vious Area	
Тс	Length		•		Description
(min)	(feet)	(ft/	ft) (ft/sec)	(cfs)	
9.6	100	0.14	0.17		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.41"
0.5	59	0.06	30 1.83		Shallow Concentrated Flow, B-C
					Short Grass Pasture Kv= 7.0 fps
0.1	112	0.044	40 23.98	301.31	Pipe Channel, C-D
					48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'
					n= 0.013 Corrugated PE, smooth interior
10.2	271	Tota			

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

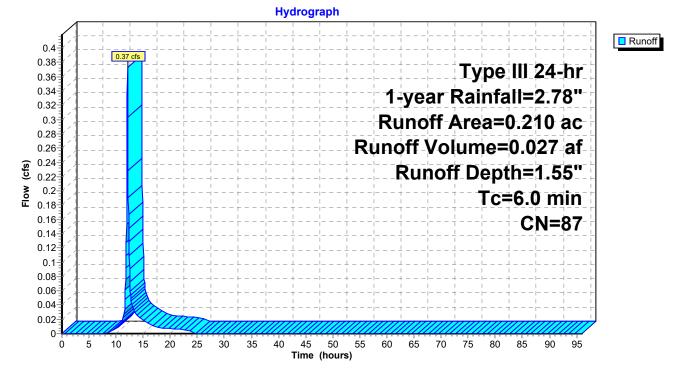

Summary for Subcatchment 200:

Runoff = 1.55 cfs @ 12.10 hrs, Volume= 0.119 af, Depth= 0.87"

Area	(ac)	CN De	scription		
0.	.020	98 Wa	iter Surface	, 0% imp, H	ISG B
0.	.010	98 Wa	iter Surface	, 0% imp, ⊦	ISG D
0.	.030	98 Ro	ofs, HSG D		
0.	.090	61 >7	5% Grass c	over, Good	, HSG B
0.	.720	80 >7	5% Grass c	over, Good	, HSG D
	.280		ods, Fair, F		
0.	.490	79 Wo	ods, Fair, F	ISG D	
	.640		eighted Ave	0	
	.610		17% Pervic		
0.	.030	1.8	3% Impervi	ous Area	
-				o ''	
Tc	Length			Capacity	Description
(min)	(feet			(cfs)	
3.7	100	0.2100	0.45		Sheet Flow, A-B
0.4	0.0				Grass: Short n= 0.150 P2= 3.41"
0.1	29	0.3800) 4.32		Shallow Concentrated Flow, B-C
0.7	400				Short Grass Pasture Kv= 7.0 fps
0.7	126	6 0.3800) 3.08		Shallow Concentrated Flow, C-D
1 0	0/	0.0400	1 10		Woodland Kv= 5.0 fps
1.3	84	0.0480) 1.10		Shallow Concentrated Flow, D-E Woodland Kv= 5.0 fps
5.8	339	Tatal	Increased		$T_{c} = 6.0 \text{ min}$
5 X	2.21		incrosed 1	o minimi im	

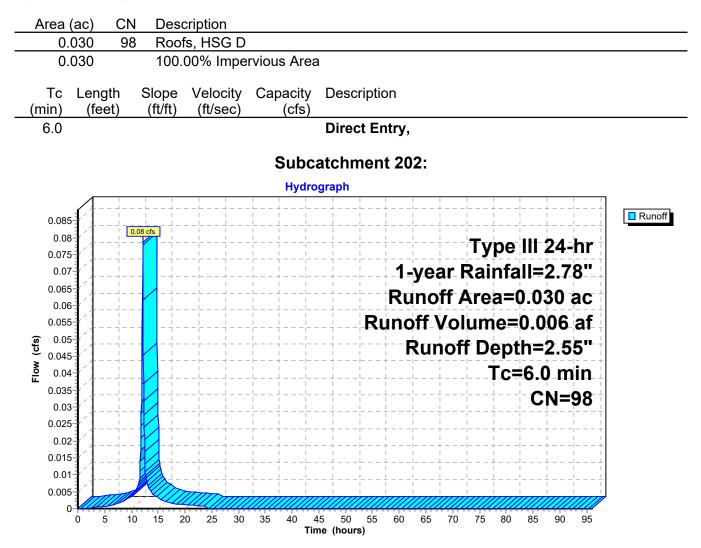
Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Subcatchment 200:

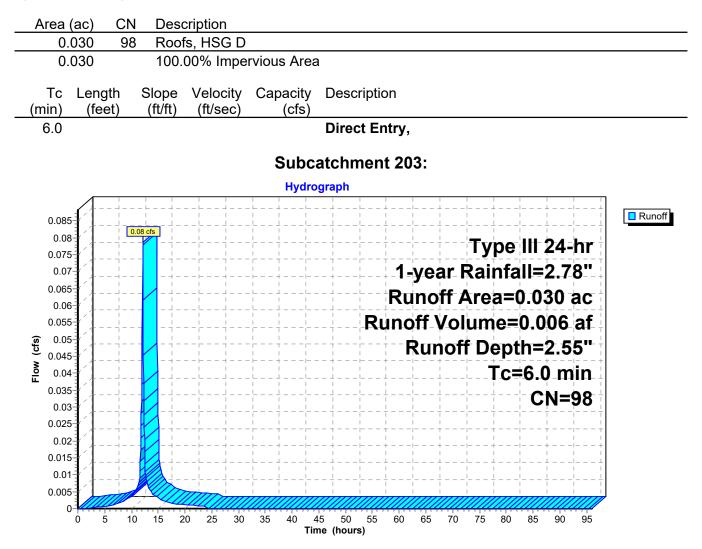

Summary for Subcatchment 201:

Runoff = 0.37 cfs @ 12.09 hrs, Volume= 0.027 af, Depth= 1.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 1-year Rainfall=2.78"


Area	(ac)	CN	Desc	cription			
0.	.050	98	Pave	ed parking	, HSG D		
0.	.030	98	Roof	s, HSG D			
0.	.130	80	>75%	% Grass co	over, Good	I, HSG D	
0.	.210	87	Weig	ghted Aver	age		
0.	.130		61.9	0% Pervio	us Area		
0.	.080		38.1	0% Imperv	/ious Area		
Тс	Leng	th	Slope	Velocity	Capacity	Description	
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		
6.0						Direct Entry,	
	Subcatchmont 201						

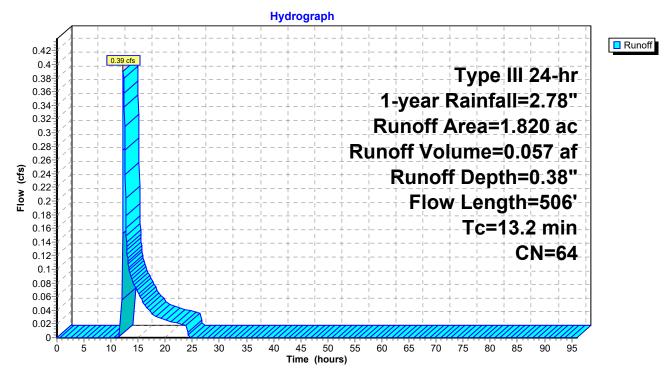
Subcatchment 201:


Summary for Subcatchment 202:

Runoff = 0.08 cfs @ 12.09 hrs, Volume= 0.006 af, Depth= 2.55"

Summary for Subcatchment 203:

Runoff = 0.08 cfs @ 12.09 hrs, Volume= 0.006 af, Depth= 2.55"

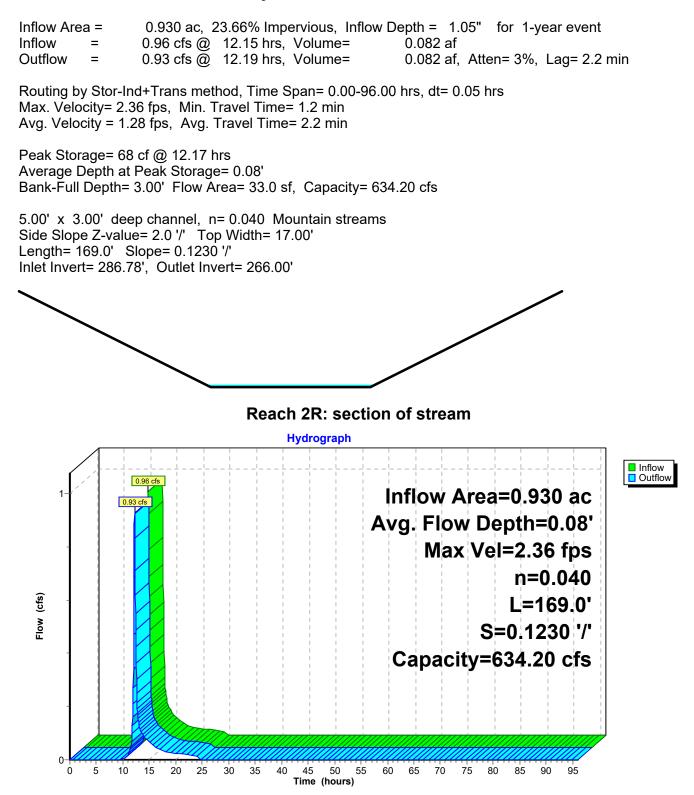

Summary for Subcatchment 300:

Runoff = 0.39 cfs @ 12.27 hrs, Volume= 0.057 af, Depth= 0.38"

Area	(ac) (CN Des	cription		
1.	110	60 Woo	ods, Fair, ⊦	ISG B	
0.	390	73 Woo	ods, Fair, F	ISG C	
0.	040			, 0% imp, H	
-				over, Good	,
				over, Good	, HSG C
0.	010	98 Pav	ed parking	, HSG B	
1.	820		ghted Aver	•	
	810		5% Pervio		
0.	010	0.55	5% Impervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
10.2	100	. ,	0.16	(010)	Sheet Flow, A-B
10.2	100	0.1200	0.10		Woods: Light underbrush n= 0.400 P2= 3.41"
2.1	245	0.1500	1.94		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
0.9	161	0.3300	2.87		Shallow Concentrated Flow, C-D
					Woodland Kv= 5.0 fps
13.2	506	Total			

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Subcatchment 300:


Summary for Subcatchment 301:

Runoff = 3.61 cfs @ 12.10 hrs, Volume= 0.271 af, Depth= 0.97"

Area (ac)	CN Des	cription				
0.470		ed parking, HSG B				
0.100 0.360		ed parking, HSG C ed parking, HSG D				
0.080	98 Roo	fs, HSG B				
0.080		fs, HSG C				
0.250 0.150		ods, Fair, HSG B ods, Fair, HSG C				
0.120	79 Woo	ods, Fair, HSG D				
0.890 0.530		% Grass cover, Go % Grass cover, Go				
0.310		% Grass cover, Go % Grass cover, Go				
3.340		ghted Average				
2.250 1.090		7% Pervious Area 3% Impervious Are				
1.000	02.0		Ga			
Tc Len (min) (fe	gth Slope et) (ft/ft)	Velocity Capaci (ft/sec) (cf	•	n		
6.0			Direct En	try,		
				-		
		Sul	bcatchmen	: 301:		
A	JL	Hy	vdrograph			
4-						Runoff
11	3.61 cfs		 	TV	oe III 24-hr	
1 /				1 yoor Dair	fall-2 70"	
3			1 + + + - + - + - + -	1-year Rair		
3			1 - <td>Runoff Area</td> <td>a=3.340 ac</td> <td></td>	Runoff Area	a=3.340 ac	
			R		a=3.340 ac	
			R	Runoff Area	a=3.340 ac	
			R	Runoff Area Inoff Volum Runoff De	a=3.340 ac e=0.271 af epth=0.97"	
3 Elow (cts)			R	Runoff Area Inoff Volum Runoff De	a=3.340 ac e=0.271 af pth=0.97" c=6.0 min	
			R	Runoff Area Inoff Volum Runoff De	a=3.340 ac e=0.271 af epth=0.97"	
			R	Runoff Area Inoff Volum Runoff De	a=3.340 ac e=0.271 af pth=0.97" c=6.0 min	
			R	Runoff Area Inoff Volum Runoff De	a=3.340 ac e=0.271 af pth=0.97" c=6.0 min	
			R	Runoff Area Inoff Volum Runoff De	a=3.340 ac e=0.271 af pth=0.97" c=6.0 min	
			45 50 55	Runoff Area Inoff Volum Runoff De T	a=3.340 ac e=0.271 af pth=0.97" c=6.0 min	

2021-04-28 Proposed Prepared by Langan Engineering and Environmental Services <u>HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC</u>

Summary for Reach 2R: section of stream

2021-04-28 Proposed*Typ*Prepared by Langan Engineering and Environmental ServicesHydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Stage-Storage 3 Storage 2-Depth (feet) 1 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 Ó Storage (cubic-feet)

Reach 2R: section of stream

Prepared by Langan Engine	ering and Environmental Services
HydroCAD® 10.00-18 s/n 11011	© 2016 HydroCAD Software Solutions LLC

Stage-Area-Storage for Reach 2R: section of stream

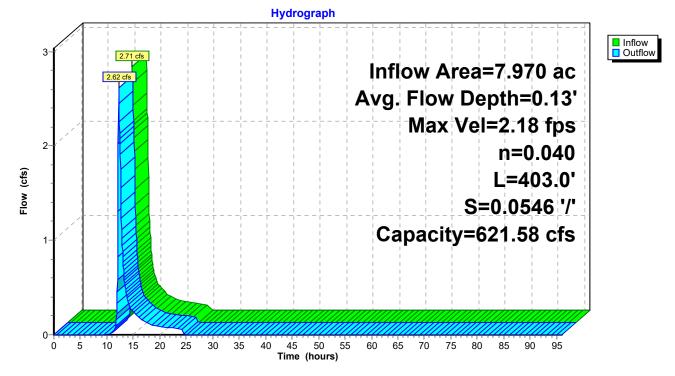
Flevation	End-Area	Storage	Flevation	End-Area	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
286.78	0.0	0	289.38	26.5	4,482
286.83	0.3	43	289.43	27.3	4,613
286.88	0.5	88	289.48	28.1	4,746
286.93	0.8	134	289.53	28.9	4,880
286.98	1.1	183	289.58	29.7	5,016
287.03	1.4	232	289.63	30.5	5,154
287.08	1.7	284	289.68	31.3	5,293
287.13	2.0	337	289.73	32.2	5,434
287.18	2.3	392	289.78	33.0	5,577
287.23	2.7	449			
287.28	3.0	507			
287.33	3.4	567			
287.38	3.7	629			
287.43	4.1	692			
287.48	4.5	757			
287.53	4.9	824			
287.58	5.3	892			
287.63 287.68	5.7 6.1	963 1,034			
287.00	6.6	1,034			
287.78	7.0	1,183			
287.83	7.5	1,260			
287.88	7.9	1,339			
287.93	8.4	1,419			
287.98	8.9	1,501			
288.03	9.4	1,584			
288.08	9.9	1,670			
288.13	10.4	1,757			
288.18	10.9	1,846			
288.23	11.5	1,936			
288.28	12.0	2,028			
288.33	12.6	2,122			
288.38	13.1	2,217			
288.43	13.7	2,314			
288.48	14.3	2,413			
288.53	14.9	2,514			
288.58 288.63	15.5 16.1	2,616 2,720			
288.68	16.7	2,826			
288.73	17.4	2,933			
288.78	18.0	3,042			
288.83	18.7	3,153			
288.88	19.3	3,265			
288.93	20.0	3,379			
288.98	20.7	3,495			
289.03	21.4	3,612			
289.08	22.1	3,732			
289.13	22.8	3,852			
289.18	23.5	3,975			
289.23	24.3	4,099			
289.28 289.33	25.0 25.8	4,225 4,353			
209.33	20.0	4,303			
			I		

2021-04-28 ProposedType IPrepared by Langan Engineering and Environmental ServicesHydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Summary for Reach 3R: section of stream

 Inflow Area =
 7.970 ac, 18.32% Impervious, Inflow Depth = 0.45" for 1-year event

 Inflow =
 2.71 cfs @ 12.15 hrs, Volume=
 0.297 af


 Outflow =
 2.62 cfs @ 12.24 hrs, Volume=
 0.297 af, Atten= 3%, Lag= 5.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Max. Velocity= 2.18 fps, Min. Travel Time= 3.1 min Avg. Velocity = 0.93 fps, Avg. Travel Time= 7.2 min

Peak Storage= 484 cf @ 12.19 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 3.00' Flow Area= 45.0 sf, Capacity= 621.58 cfs

9.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 21.00' Length= 403.0' Slope= 0.0546 '/' Inlet Invert= 266.00', Outlet Invert= 244.00'

Reach 3R: section of stream

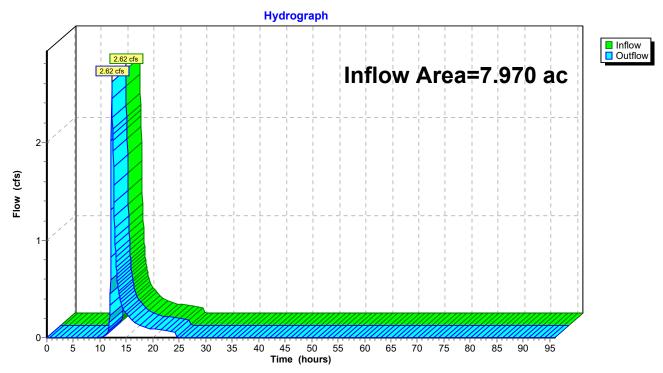
2021-04-28 Proposed*Typ*Prepared by Langan Engineering and Environmental ServicesHydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Stage-Storage 3 Storage 2-Depth (feet) 1 0-2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 ò Storage (cubic-feet)

Reach 3R: section of stream

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Stage-Area-Storage for Reach 3R: section of stream


	Elevation	End-Area	Storage	Elevation	End-Area	Storage
	(feet)	(sq-ft)	(cubic-feet)	(feet)		(cubic-feet)
-	266.00	0.0	0	268.60		14,879
	266.05	0.5	184	268.65		15,272
	266.10	0.9	371	268.70		15,669
	266.15	1.4	562	268.75		16,070
	266.20	1.9	758	268.80		16,475
	266.25	2.4	957	268.85		16,884
	266.30	2.9	1,161	268.90		17,297
	266.35	3.4	1,368	268.95		17,714
	266.40	3.9	1,580	269.00		18,135
	266.45	4.5	1,795			,
	266.50	5.0	2,015			
	266.55	5.6	2,239			
	266.60	6.1	2,466			
	266.65	6.7	2,698			
	266.70	7.3	2,934			
	266.75	7.9	3,174			
	266.80	8.5	3,418			
	266.85	9.1	3,665			
	266.90	9.7	3,917			
	266.95	10.4	4,173			
	267.00	11.0	4,433			
	267.05	11.7	4,697			
	267.10	12.3	4,965			
	267.15	13.0	5,237			
	267.20	13.7	5,513			
	267.25	14.4	5,793			
	267.30	15.1	6,077			
	267.35	15.8	6,365			
	267.40	16.5	6,658			
	267.45	17.3	6,954			
	267.50	18.0	7,254			
	267.55	18.8	7,558			
	267.60	19.5	7,867			
	267.65	20.3	8,179			
	267.70	21.1	8,495			
	267.75	21.9	8,816			
	267.80	22.7 23.5	9,140			
	267.85	23.5	9,469 9,801			
	267.90 267.95	24.3 25.2	10,137			
	268.00	26.0	10,137			
	268.05	26.9	10,470			
	268.10	20.5	11,171			
	268.15	28.6	11,524			
	268.20	29.5	11,881			
	268.25	30.4	12,241			
	268.30	31.3	12,606			
	268.35	32.2	12,975			
	268.40	33.1	13,347			
	268.45	34.1	13,724			
	268.50	35.0	14,105			
	268.55	36.0	14,490			

2021-04-28 Proposed	Type III 24-hr	1-year Rainfall=2.78"
Prepared by Langan Engineering and Environmental Services		Printed 4/28/2021
HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions	LLC	Page 19

Summary for Reach DP-1:

Inflow Area =	7.970 ac, 18.32% Impervious, Inflow Depth = 0.45" for 1-year ex	/ent
Inflow =	2.62 cfs @ 12.24 hrs, Volume= 0.297 af	
Outflow =	2.62 cfs @ 12.24 hrs, Volume= 0.297 af, Atten= 0%, Lag=	0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Reach DP-1:

Summary for Pond 1P: Lot 1 cultec

Inflow Area =	0.210 ac, 38.10% Impervious, Inflow Dep	pth = 1.55" for 1-year event
Inflow =	0.37 cfs @ 12.09 hrs, Volume= (0.027 af
Outflow =	0.28 cfs @ 12.17 hrs, Volume= (0.027 af, Atten= 26%, Lag= 4.9 min
Discarded =	0.04 cfs @ 11.70 hrs, Volume= (0.020 af
Primary =	0.24 cfs @ 12.17 hrs, Volume= (0.007 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 301.21' @ 12.17 hrs Surf.Area= 429 sf Storage= 187 cf

Plug-Flow detention time= 14.1 min calculated for 0.027 af (100% of inflow) Center-of-Mass det. time= 14.1 min (839.0 - 825.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	300.40'	153 cf	6.33'W x 24.50'L x 3.54'H Field A
			550 cf Overall - 168 cf Embedded = 382 cf x 40.0% Voids
#2A	300.90'	168 cf	Cultec R-330XLHD x 3 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 1 rows
#3B	300.40'	253 cf	11.17'W x 24.50'L x 3.54'H Field B
			969 cf Overall - 335 cf Embedded = 634 cf x 40.0% Voids
#4B	300.90'	335 cf	Cultec R-330XLHD x 6 Inside #3
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 2 rows
		909 cf	Total Available Storage

909 CT I otal Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	300.90'	6.0" Round Culvert
			L= 26.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 300.90' / 300.00' S= 0.0346 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
#2	Discarded	300.40'	4.100 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.04 cfs @ 11.70 hrs HW=300.45' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.23 cfs @ 12.17 hrs HW=301.20' (Free Discharge) **1=Culvert** (Inlet Controls 0.23 cfs @ 1.86 fps)

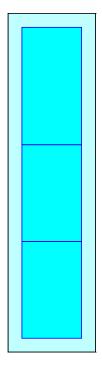
Pond 1P: Lot 1 cultec - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 1 rows

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length

1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width


6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height

3 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 1 Rows = 167.6 cf Chamber Storage

549.5 cf Field - 167.6 cf Chambers = 381.9 cf Stone x 40.0% Voids = 152.8 cf Stone Storage

Chamber Storage + Stone Storage = 320.4 cf = 0.007 af Overall Storage Efficiency = 58.3% Overall System Size = 24.50' x 6.33' x 3.54'

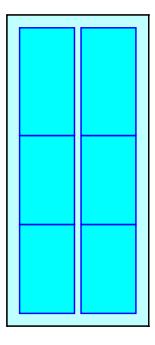
3 Chambers 20.4 cy Field 14.1 cy Stone

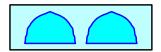
Pond 1P: Lot 1 cultec - Chamber Wizard Field B

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 2 rows

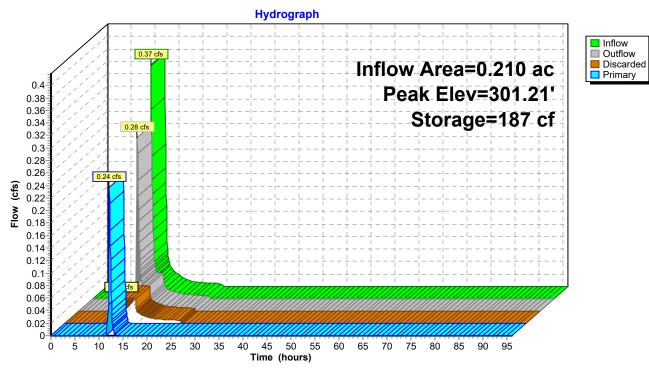
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

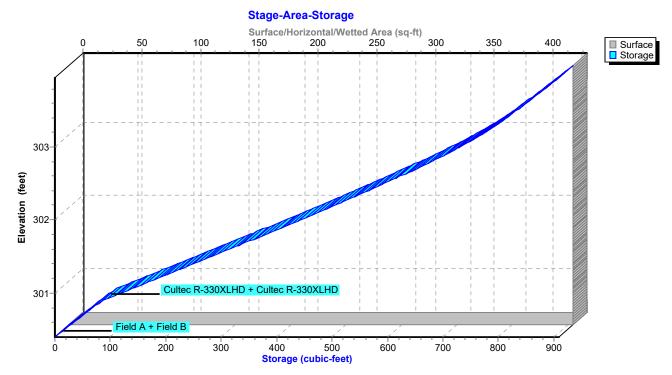

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length 2 Rows x 52.0" Wide + 6.0" Spacing x 1 + 12.0" Side Stone x 2 = 11.17' Base Width 6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height


6 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 2 Rows = 335.3 cf Chamber Storage

968.9 cf Field - 335.3 cf Chambers = 633.6 cf Stone x 40.0% Voids = 253.5 cf Stone Storage

Chamber Storage + Stone Storage = 588.8 cf = 0.014 afOverall Storage Efficiency = 60.8%Overall System Size = $24.50' \times 11.17' \times 3.54'$


6 Chambers 35.9 cy Field 23.5 cy Stone



Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Pond 1P: Lot 1 cultec

Pond 1P: Lot 1 cultec

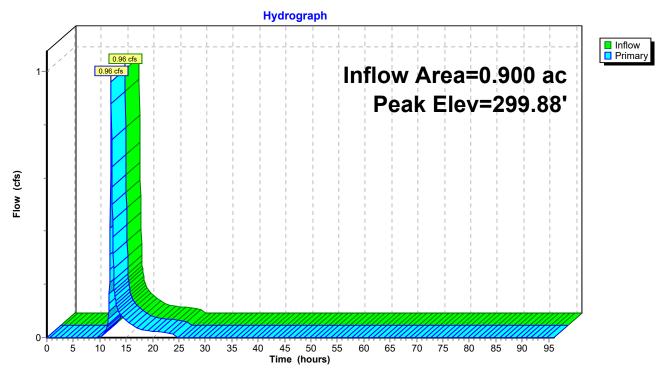
Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
300.40	429	0	303.00	429	732
300.45	429	9	303.05	429	744
300.50	429	17	303.10	429	756
300.55	429	26	303.15	429	767
300.60	429	34	303.20	429	778
300.65	429	43	303.25	429	788
300.70	429	51	303.30	429	798
300.75	429	60	303.35	429	807
300.80	429	69 77	303.40	429	816
300.85 300.90	429 429	77 86	303.45 303.50	429 429	825 833
300.95	429	102	303.55	429 429	842
301.00	429	119	303.60	429	851
301.05	429	136	303.65	429	859
301.10	429	152	303.70	429	868
301.15	429	168	303.75	429	876
301.20	429	185	303.80	429	885
301.25	429	201	303.85	429	893
301.30	429	218	303.90	429	902
301.35	429	234			
301.40	429	251			
301.45	429	267			
301.50	429	283			
301.55	429	299			
301.60	429	316			
301.65	429	332			
301.70	429	347			
301.75 301.80	429 429	363 379			
301.85	429	395			
301.90	429	411			
301.95	429	427			
302.00	429	443			
302.05	429	459			
302.10	429	474			
302.15	429	490			
302.20	429	505			
302.25	429	521			
302.30	429	536			
302.35	429	551			
302.40	429	566			
302.45	429	581			
302.50	429 429	595			
302.55 302.60	429 429	610 624			
302.65	429	638			
302.00	429	652			
302.75	429	666			
302.80	429	680			
302.85	429	693			
302.90	429	706			
302.95	429	719			
			l		

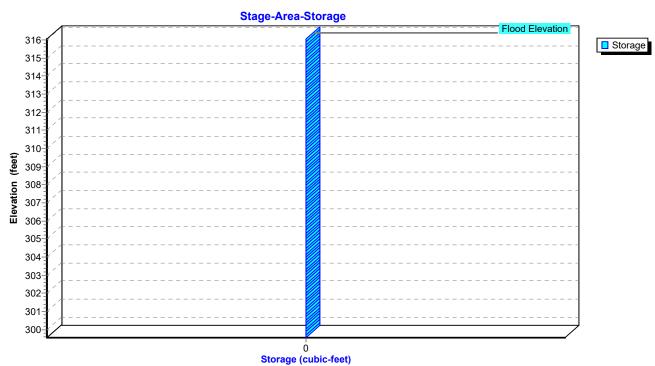
Stage-Area-Storage for Pond 1P: Lot 1 cultec

Summary for Pond 1R: twin 48" culverts

Inflow Are	a =	0.900 ac, 21.11%	Impervious, Inflow D	Pepth = 1.09" for 1-year event	
Inflow	=	0.96 cfs @ 12.15	hrs, Volume=	0.082 af	
Outflow	=	0.96 cfs @ 12.15	hrs, Volume=	0.082 af, Atten= 0%, Lag= 0.0	min
Primary	=	0.96 cfs @ 12.15	hrs, Volume=	0.082 af	
Deuting by Ster lad method. Time Sherry 0.00.00 bre. dt= 0.05 bre					


Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 299.88' @ 12.15 hrs Flood Elev= 316.05'

Device	Routing	Invert	Outlet Devices
#1	Primary	299.55'	48.0" Round Culvert L= 182.0' CPP, square edge headwall, Ke= 0.500
#2	Primary	299.90'	Inlet / Outlet Invert= 299.55' / 286.78' S= 0.0702 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 12.57 sf 48.0" Round Culvert L= 180.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 299.90' / 287.92' S= 0.0666 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 12.57 sf


Primary OutFlow Max=0.95 cfs @ 12.15 hrs HW=299.88' (Free Discharge) **1=Culvert** (Inlet Controls 0.95 cfs @ 1.95 fps)

-2=Culvert (Controls 0.00 cfs)

Pond 1R: twin 48" culverts

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Pond 1R: twin 48" culverts

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 1R: twin 48" culverts

	•	I ·=	C
Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
299.55	0	309.95	0
299.75	0	310.15	0
299.95	0	310.35	0
300.15	0	310.55	0
300.35	0	310.75	0
300.55	0	310.95	0
300.75	0	311.15	0
300.95	0	311.35 311.55	0
301.15 301.35	0 0	311.55	0
301.55	0	311.75	0 0
301.55	0	312.15	0
301.95	0	312.15	0
302.15	0	312.55	0
302.35	0	312.55	0
302.55	0	312.95	0
302.75	0	313.15	0
302.95	0	313.35	0
303.15	0	313.55	0
303.35	0	313.75	0
303.55	ů 0	313.95	0 0
303.75	Õ	314.15	Ő
303.95	0 0	314.35	0 0
304.15	Õ	314.55	Ő
304.35	Ő	314.75	0 0
304.55	0	314.95	0
304.75	Ō	315.15	0
304.95	0	315.35	0
305.15	0	315.55	0
305.35	0	315.75	0
305.55	0	315.95	0
305.75	0		
305.95	0		
306.15	0		
306.35	0		
306.55	0		
306.75	0		
306.95	0		
307.15	0		
307.35	0		
307.55	0		
307.75	0		
307.95	0		
308.15	0		
308.35	0		
308.55 308.75	0		
	0		
308.95 309.15	0 0		
309.15 309.35	0		
309.35 309.55	0		
309.55 309.75	0		
503.15	0		
		I	

Summary for Pond 2P: Lot 2 cultec

Inflow Area =	0.030 ac,100.00% Impervious, Inflow De	epth = 2.55" for 1-year event
Inflow =	0.08 cfs @ 12.09 hrs, Volume=	0.006 af
Outflow =	0.03 cfs @ 11.95 hrs, Volume=	0.006 af, Atten= 63%, Lag= 0.0 min
Discarded =	0.03 cfs @ 11.95 hrs, Volume=	0.006 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 310.70' @ 12.33 hrs Surf.Area= 310 sf Storage= 37 cf

Plug-Flow detention time= 6.6 min calculated for 0.006 af (100% of inflow) Center-of-Mass det. time= 6.6 min (766.0 - 759.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	310.40'	153 cf	6.33'W x 24.50'L x 3.54'H Field A
			550 cf Overall - 168 cf Embedded = 382 cf x 40.0% Voids
#2A	310.90'	168 cf	Cultec R-330XLHD x 3 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 1 rows
#3B	310.40'	153 cf	6.33'W x 24.50'L x 3.54'H Field B
			550 cf Overall - 168 cf Embedded = 382 cf x 40.0% Voids
#4B	310.90'	168 cf	Cultec R-330XLHD x 3 Inside #3
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 1 rows
		641 cf	Total Available Storage

641 CT I otal Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	310.90'	6.0" Round Culvert
			L= 21.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 310.90' / 310.00' S= 0.0429 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
#2	Discarded	310.40'	4.100 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.03 cfs @ 11.95 hrs HW=310.44' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=310.40' (Free Discharge) 1=Culvert (Controls 0.00 cfs)

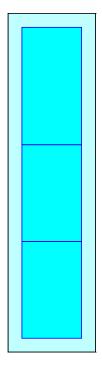
Pond 2P: Lot 2 cultec - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 1 rows

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length

1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width


6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height

3 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 1 Rows = 167.6 cf Chamber Storage

549.5 cf Field - 167.6 cf Chambers = 381.9 cf Stone x 40.0% Voids = 152.8 cf Stone Storage

Chamber Storage + Stone Storage = 320.4 cf = 0.007 af Overall Storage Efficiency = 58.3% Overall System Size = 24.50' x 6.33' x 3.54'

3 Chambers 20.4 cy Field 14.1 cy Stone

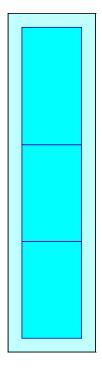
Pond 2P: Lot 2 cultec - Chamber Wizard Field B

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 1 rows

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length

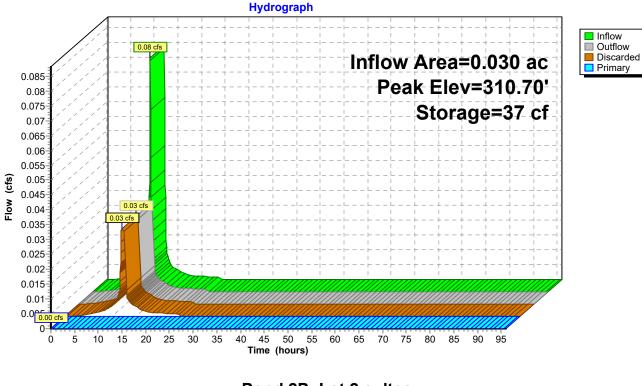
1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width

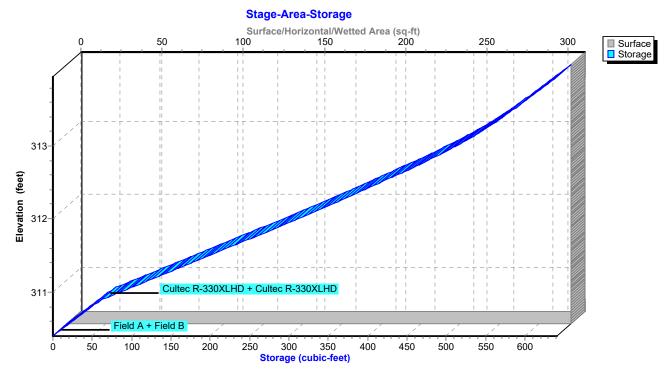

6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height

3 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 1 Rows = 167.6 cf Chamber Storage

549.5 cf Field - 167.6 cf Chambers = 381.9 cf Stone x 40.0% Voids = 152.8 cf Stone Storage

Chamber Storage + Stone Storage = 320.4 cf = 0.007 af Overall Storage Efficiency = 58.3% Overall System Size = 24.50' x 6.33' x 3.54'


3 Chambers 20.4 cy Field 14.1 cy Stone



Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Pond 2P: Lot 2 cultec

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

		-	-		
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
310.40	310	0	313.00	310	513
310.45	310	6	313.05	310	522
310.50	310	12	313.10	310	530
310.55	310	19	313.15	310	538
310.60	310	25	313.20	310	546
310.65	310	31	313.25	310	553
310.70	310	37	313.30	310	560
310.75	310	43	313.35	310	567
310.80	310	50	313.40	310	574
310.85	310	56	313.45	310	580
310.90	310	62	313.50	310	586
310.95	310	74	313.55	310	592
311.00	310	85	313.60	310	598
311.05	310	97	313.65	310	605
311.10	310	108	313.70	310	611
311.15	310	120	313.75	310	617
311.20	310	131	313.80	310	623
311.25	310	143	313.85	310	629
311.30	310	154	313.90	310	636
311.35	310	165			
311.40	310	177			
311.45	310	188			
311.50	310	200			
311.55	310	211			
311.60	310	222			
311.65	310	233			
311.70	310	244			
311.75	310	256			
311.80	310	267			
311.85	310	278			
311.90	310	289			
311.95	310	300			
312.00	310	311			
312.05	310	322			
312.10	310	333			
312.15	310	344			
312.20	310	355			
312.25	310	365			
312.30	310	376			
312.35	310	386			
312.40	310	397			
312.45	310	407			
312.50	310	418			
312.55	310	428			
312.60	310	438			
312.65	310	448			
312.70	310	457			
312.75	310	467			
312.80	310	477			
312.85	310	486			
312.90	310	495			
312.95	310	504			

Stage-Area-Storage for Pond 2P: Lot 2 cultec

Summary for Pond 3P: Lot 4 cultec

Inflow Area =	0.030 ac,100.00% Impervious, Inflow De	epth = 2.55" for 1-year event
Inflow =	0.08 cfs @ 12.09 hrs, Volume=	0.006 af
Outflow =	0.03 cfs @ 11.95 hrs, Volume=	0.006 af, Atten= 63%, Lag= 0.0 min
Discarded =	0.03 cfs @ 11.95 hrs, Volume=	0.006 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 291.70' @ 12.33 hrs Surf.Area= 310 sf Storage= 37 cf

Plug-Flow detention time= 6.6 min calculated for 0.006 af (100% of inflow) Center-of-Mass det. time= 6.6 min (766.0 - 759.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	291.40'	153 cf	6.33'W x 24.50'L x 3.54'H Field A
			550 cf Overall - 168 cf Embedded = 382 cf x 40.0% Voids
#2A	291.90'	168 cf	Cultec R-330XLHD x 3 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 1 rows
#3B	291.40'	153 cf	6.33'W x 24.50'L x 3.54'H Field B
			550 cf Overall - 168 cf Embedded = 382 cf x 40.0% Voids
#4B	291.90'	168 cf	Cultec R-330XLHD x 3 Inside #3
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 1 rows
		641 cf	Total Available Storage

641 CT I otal Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	291.90'	6.0" Round Culvert
	•		L= 20.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 291.90' / 291.00' S= 0.0450 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
#2	Discarded	291.40'	4.100 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.03 cfs @ 11.95 hrs HW=291.44' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=291.40' (Free Discharge) 1=Culvert (Controls 0.00 cfs)

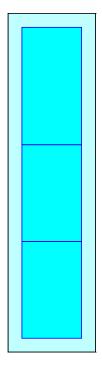
Pond 3P: Lot 4 cultec - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 1 rows

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length

1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width


6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height

3 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 1 Rows = 167.6 cf Chamber Storage

549.5 cf Field - 167.6 cf Chambers = 381.9 cf Stone x 40.0% Voids = 152.8 cf Stone Storage

Chamber Storage + Stone Storage = 320.4 cf = 0.007 af Overall Storage Efficiency = 58.3% Overall System Size = 24.50' x 6.33' x 3.54'

3 Chambers 20.4 cy Field 14.1 cy Stone

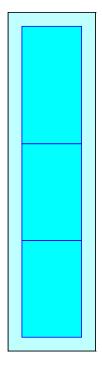
Pond 3P: Lot 4 cultec - Chamber Wizard Field B

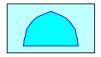
Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 1 rows

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length

1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width

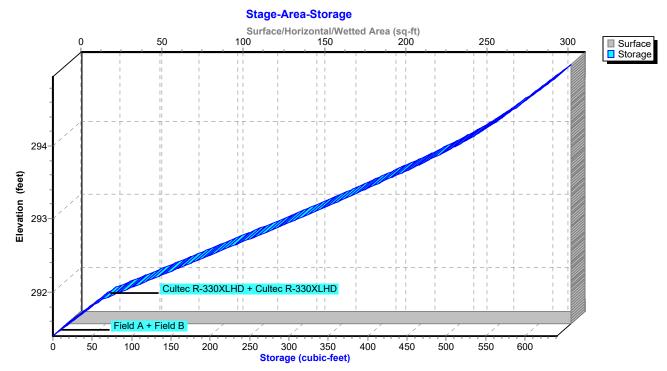

6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height


3 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 1 Rows = 167.6 cf Chamber Storage

549.5 cf Field - 167.6 cf Chambers = 381.9 cf Stone x 40.0% Voids = 152.8 cf Stone Storage

Chamber Storage + Stone Storage = 320.4 cf = 0.007 af Overall Storage Efficiency = 58.3% Overall System Size = 24.50' x 6.33' x 3.54'

3 Chambers 20.4 cy Field 14.1 cy Stone



Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Pond 3P: Lot 4 cultec

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
291.40	310	0	294.00	310	513
291.45	310	6	294.05	310	522
291.50	310	12	294.10	310	530
291.55	310	19	294.15	310	538
291.60	310	25	294.20	310	546
291.65	310	31	294.25	310	553
291.70	310	37	294.30	310	560
291.75	310	43	294.35	310	567
291.80	310	50	294.40	310	574
291.85	310	56	294.45	310	580
291.90	310	62	294.50	310	586
291.95	310	74	294.55	310	592
292.00	310	85	294.60	310	598
292.05	310	97	294.65	310	605
292.10	310	108	294.70	310	611
292.15	310	120	294.75	310	617
292.20	310	131	294.80	310	623
292.25	310	143	294.85	310	629
292.30	310	154	294.90	310	636
292.35	310	165	204.00	010	000
292.40	310	177			
292.45	310	188			
292.50	310	200			
292.55	310	200			
292.60	310	222			
292.65	310	233			
292.70	310	244			
292.75	310	256			
292.80	310	267			
292.85	310	278			
292.90	310	289			
292.95	310	300			
293.00	310	311			
293.05	310	322			
293.10	310	333			
293.15	310	344			
293.20	310	355			
293.25	310	365			
293.30	310	376			
293.35	310	386			
293.40	310	397			
293.45	310	407			
293.50	310	418			
293.55	310	428			
293.60	310	438			
293.65	310	448			
293.70	310	457			
293.75	310	467			
293.80	310	477			
293.85	310	486			
293.90	310	495			
293.95	310	504			
			-		

Stage-Area-Storage for Pond 3P: Lot 4 cultec

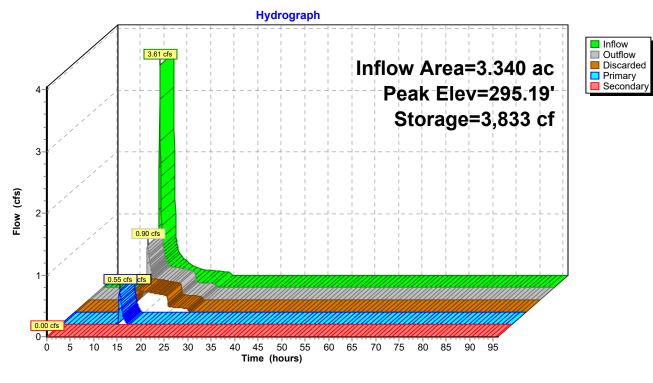
Summary for Pond 4P: infiltration basin

Inflow Area =	3.340 ac, 32.63% Impervious, Inflow	Depth = 0.97" for 1-year event
Inflow =	3.61 cfs @ 12.10 hrs, Volume=	0.271 af
Outflow =	0.90 cfs @ 12.53 hrs, Volume=	0.271 af, Atten= 75%, Lag= 25.9 min
Discarded =	0.35 cfs @ 12.53 hrs, Volume=	0.240 af
Primary =	0.55 cfs @ 12.53 hrs, Volume=	0.032 af
Secondary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

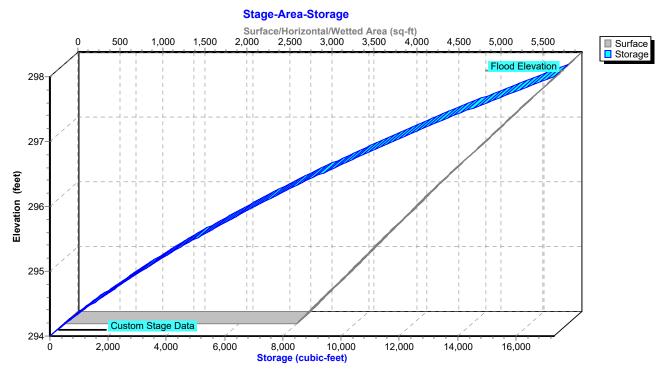
Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 295.19' @ 12.53 hrs Surf.Area= 3,675 sf Storage= 3,833 cf Flood Elev= 298.00' Surf.Area= 5,955 sf Storage= 17,305 cf

Plug-Flow detention time= 88.2 min calculated for 0.271 af (100% of inflow) Center-of-Mass det. time= 88.1 min (945.4 - 857.2)

Volume	Invert	Avail.Stor	rage Storage I	Description	
#1	294.00'	17,30	05 cf Custom	Stage Data (Pri	ismatic)Listed below (Recalc)
Flovetic		rf Aroo	Inc. Store	Cum Store	
Elevatio		rf.Area	Inc.Store	Cum.Store	
(fee	1	(sq-ft)	(cubic-feet)	(cubic-feet)	
294.0)0	2,750	0	0	
296.0	00	4,300	7,050	7,050	
298.0)0	5,955	10,255	17,305	
				,	
Device	Routing	Invert	Outlet Devices		
#1	Primary	290.40'	15.0" Round	Culvert	
	,		L= 16.0' CPP.	, square edge h	eadwall, Ke= 0.500
					288.00' S= 0.1500 '/' Cc= 0.900
					ooth interior, Flow Area= 1.23 sf
#2	Device 1	295.00'		0	
#3	Device 1	296.00'		Horiz. Grate C	
110	Device 1	200.00		flow at low hear	
#4	Secondary	297.00'			
#4	Secondary	291.00			' rise Emergency spillway
	Discussion	004.001	Cv= 2.47 (C= 3		
#5	Discarded	294.00'	4.100 in/hr Ex	filtration over \$	Surface area
Disconded QutElow Max-0.25 of @ 12.52 hrs. UW-205.401 (Free Discharge)					


Discarded OutFlow Max=0.35 cfs @ 12.53 hrs HW=295.19' (Free Discharge) **5=Exfiltration** (Exfiltration Controls 0.35 cfs)

Primary OutFlow Max=0.54 cfs @ 12.53 hrs HW=295.19' (Free Discharge) 1=Culvert (Passes 0.54 cfs of 12.06 cfs potential flow) 2=Slot (Orifice Controls 0.54 cfs @ 1.41 fps) 3=Grate (Controls 0.00 cfs)


Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=294.00' (Free Discharge) 4=Emergency spillway (Controls 0.00 cfs)

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Pond 4P: infiltration basin

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
294.00	2,750	0	296.60	4,797	9,779
294.05	2,789	138	296.65	4,838	10,020
294.10	2,828	279	296.70	4,879	10,263
294.15	2,866	421	296.75	4,921	10,508
294.20	2,905	565	296.80	4,962	10,755
294.25	2,944	712	296.85	5,003	11,004
294.30	2,983	860	296.90	5,045	11,255
294.35	3,021	1,010	296.95	5,086	11,508
294.40	3,060	1,162	297.00	5,128	11,764
294.45	3,099	1,316	297.05	5,169	12,021
294.50	3,138	1,472	297.10	5,210	12,281
294.55 294.60	3,176	1,630	297.15 297.20	5,252	12,542
	3,215 3,254	1,790 1,951	297.20	5,293 5,334	12,806 13,071
294.65 294.70	3,292	2,115	297.25	5,334	13,339
294.70	3,331	2,113	297.35	5,417	13,609
294.75	3,370	2,200 2,448	297.33	5,458	13,881
294.85	3,409	2,617	297.45	5,500	14,155
294.90	3,447	2,789	297.50	5,541	14,431
294.95	3,486	2,962	297.55	5,583	14,709
295.00	3,525	3,138	297.60	5,624	14,989
295.05	3,564	3,315	297.65	5,665	15,271
295.10	3,603	3,494	297.70	5,707	15,556
295.15	3,641	3,675	297.75	5,748	15,842
295.20	3,680	3,858	297.80	5,790	16,131
295.25	3,719	4,043	297.85	5,831	16,421
295.30	3,758	4,230	297.90	5,872	16,714
295.35	3,796	4,419	297.95	5,914	17,008
295.40	3,835	4,609	298.00	5,955	17,305
295.45	3,874	4,802			
295.50	3,913	4,997			
295.55	3,951	5,193			
295.60	3,990	5,392			
295.65	4,029	5,592			
295.70	4,067	5,795			
295.75	4,106	5,999			
295.80	4,145	6,206			
295.85	4,184	6,414			
295.90 295.95	4,222 4,261	6,624 6,836			
	4,201	7,050			
296.00 296.05	4,300	7,050			
296.10	4,383	7,200			
296.15	4,424	7,704			
296.20	4,465	7,927			
296.25	4,507	8,151			
296.30	4,548	8,377			
296.35	4,590	8,606			
296.40	4,631	8,836			
296.45	4,672	9,069			
296.50	4,714	9,303			
296.55	4,755	9,540			

Stage-Area-Storage for Pond 4P: infiltration basin

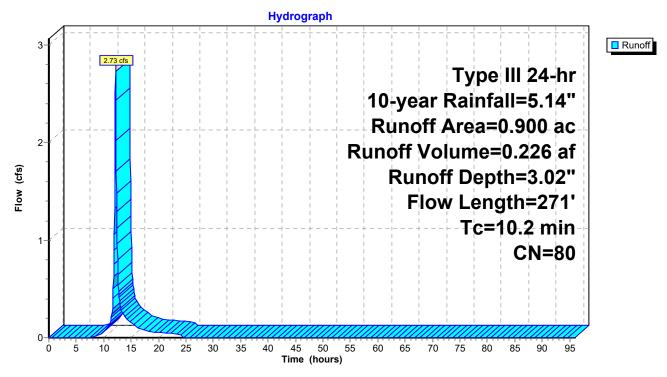
2021-04-28 Proposed Prepared by Langan Engineering and Environmental Services

Type III 24-hr 10-year Rainfall=5.14" Printed 4/28/2021 HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC Page 41

Time span=0.00-96.00 hrs, dt=0.05 hrs, 1921 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment100:	Runoff Area=0.900 ac 21.11% Impervious Runoff Depth=3.02" Flow Length=271' Tc=10.2 min CN=80 Runoff=2.73 cfs 0.226 af
Subcatchment200:	Runoff Area=1.640 ac 1.83% Impervious Runoff Depth=2.65" Flow Length=339' Tc=6.0 min CN=76 Runoff=5.00 cfs 0.362 af
Subcatchment201:	Runoff Area=0.210 ac 38.10% Impervious Runoff Depth=3.70" Tc=6.0 min CN=87 Runoff=0.87 cfs 0.065 af
Subcatchment202:	Runoff Area=0.030 ac 100.00% Impervious Runoff Depth=4.90" Tc=6.0 min CN=98 Runoff=0.15 cfs 0.012 af
Subcatchment203:	Runoff Area=0.030 ac 100.00% Impervious Runoff Depth=4.90" Tc=6.0 min CN=98 Runoff=0.15 cfs 0.012 af
Subcatchment300:	Runoff Area=1.820 ac 0.55% Impervious Runoff Depth=1.67" Flow Length=506' Tc=13.2 min CN=64 Runoff=2.65 cfs 0.254 af
Subcatchment301:	Runoff Area=3.340 ac 32.63% Impervious Runoff Depth=2.83" Tc=6.0 min CN=78 Runoff=10.87 cfs 0.788 af
Reach 2R: section of str	eam Avg. Flow Depth=0.15' Max Vel=3.50 fps Inflow=2.76 cfs 0.227 af n=0.040 L=169.0' S=0.1230 '/' Capacity=634.20 cfs Outflow=2.69 cfs 0.227 af
Reach 3R: section of str	eam Avg. Flow Depth=0.38' Max Vel=4.29 fps Inflow=16.09 cfs 1.277 af n=0.040 L=403.0' S=0.0546 '/' Capacity=621.58 cfs Outflow=15.69 cfs 1.277 af
Reach DP-1:	Inflow=15.69 cfs 1.277 af Outflow=15.69 cfs 1.277 af
Pond 1P: Lot 1 cultec	Peak Elev=301.62' Storage=321 cf Inflow=0.87 cfs 0.065 af Discarded=0.04 cfs 0.034 af Primary=0.65 cfs 0.030 af Outflow=0.69 cfs 0.065 af
Pond 1R: twin 48" culve	rts Peak Elev=300.07' Inflow=2.73 cfs 0.226 af Outflow=2.73 cfs 0.226 af
Pond 2P: Lot 2 cultec	Peak Elev=311.02' Storage=90 cf Inflow=0.15 cfs 0.012 af Discarded=0.03 cfs 0.011 af Primary=0.05 cfs 0.001 af Outflow=0.07 cfs 0.012 af
Pond 3P: Lot 4 cultec	Peak Elev=292.02' Storage=90 cf Inflow=0.15 cfs 0.012 af Discarded=0.03 cfs 0.011 af Primary=0.05 cfs 0.001 af Outflow=0.07 cfs 0.012 af
Pond 4P: infiltration bas Discarded=0.42 cfs 0.386 af	in Peak Elev=296.14' Storage=7,677 cf Inflow=10.87 cfs 0.788 af Primary=6.87 cfs 0.402 af Secondary=0.00 cfs 0.000 af Outflow=7.29 cfs 0.788 af
Total Ru	noff Area = 7.970 ac Runoff Volume = 1.719 af Average Runoff Depth = 2.59

Total Runoff Area = 7.970 ac Runoff Volume = 1.719 af Average Runoff Depth = 2.59" 81.68% Pervious = 6.510 ac 18.32% Impervious = 1.460 ac

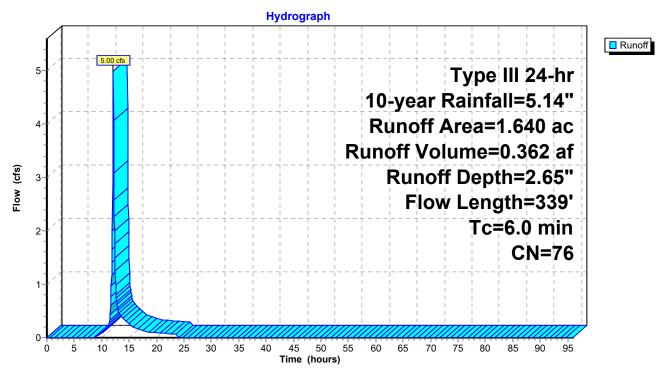

Summary for Subcatchment 100:

Runoff = 2.73 cfs @ 12.15 hrs, Volume= 0.226 af, Depth= 3.02"

Area	(ac) (CN E	escription		
0.	150	98 F	aved parkir	ng, HSG B	
0.	020	85 0	Gravel roads	, HSG B	
0.	010	91 G	Gravel roads	, HSG D	
0.	040	98 F	Roofs, HSG	D	
0.	130	69 5	0-75% Gras	ss cover, Fail	r, HSG B
0.	130	80 >	75% Grass	cover, Good	, HSG D
0.	110	60 V	Voods, Fair,	HSG B	
0.	310	79 V	Voods, Fair,	HSG D	
0.	900	80 V	Veighted Av	erage	
0.	710	7	8.89% Perv	rious Area	
0.	190	2	1.11% Impe	ervious Area	
Tc	Length	ı Slo	pe Velocit	y Capacity	Description
(min)	(feet)) (ft/	'ft) (ft/sec) (cfs)	
9.6	100	0.14	00 0.1	7	Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.41"
0.5	59	0.06	80 1.8	3	Shallow Concentrated Flow, B-C
					Short Grass Pasture Kv= 7.0 fps
0.1	112	0.04	40 23.9	8 301.31	Pipe Channel, C-D
					48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'
					n= 0.013 Corrugated PE, smooth interior
10.2	271	Tota			

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

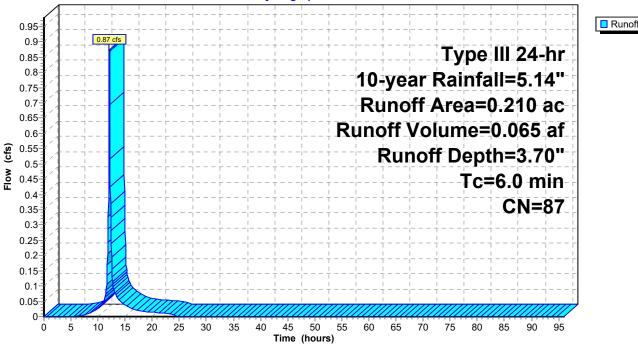
Subcatchment 100:


Summary for Subcatchment 200:

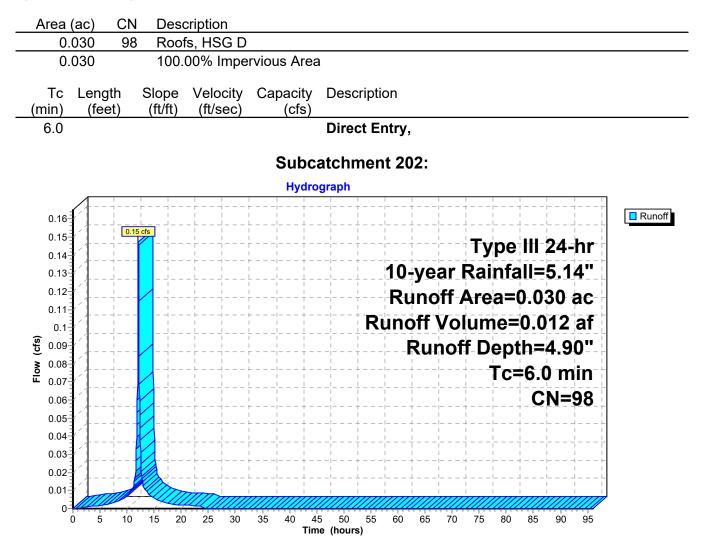
Runoff = 5.00 cfs @ 12.09 hrs, Volume= 0.362 af, Depth= 2.65"

Area	(ac)	CN	Desc	cription		
0	.020	98	Wate	er Surface,	, 0% imp, ⊦	ISG B
0	.010	98	Wate	er Surface,	, 0% imp, ⊦	ISG D
0	.030	98	Root	fs, HSG D		
0	.090	61	>759	% Grass co	over, Good	, HSG B
-	.720	80			over, Good	, HSG D
	.280	60		ds, Fair, H		
	.490	79		ds, Fair, H		
	.640	76		phted Aver	0	
	.610			7% Pervio		
0.	.030		1.83	% Impervi	ous Area	
Тс	Longt		lono	Volocity	Conacity	Description
(min)	Lengtl (feet		lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
3.7	100	/	2100	0.45	(010)	Sheet Flow, A-B
5.7	10	J 0.2	100	0.45		Grass: Short n= 0.150 P2= 3.41"
0.1	29	9 03	3800	4.32		Shallow Concentrated Flow, B-C
0.1	_	0.0				Short Grass Pasture Kv= 7.0 fps
0.7	120	6 0.3	3800	3.08		Shallow Concentrated Flow, C-D
						Woodland Kv= 5.0 fps
1.3	84	4 0.0)480	1.10		Shallow Concentrated Flow, D-E
						Woodland Kv= 5.0 fps
5.8	33	Э То	tal, li	ncreased t	o minimum	Tc = 6.0 min

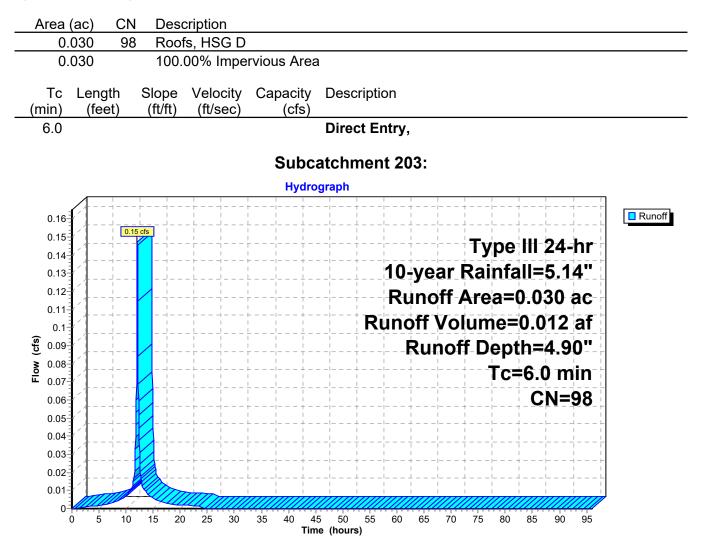
Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC


Subcatchment 200:

Summary for Subcatchment 201:


Runoff = 0.87 cfs @ 12.09 hrs, Volume= 0.065 af, Depth= 3.70"

Area (ac) CN Description	
0.050 98 Paved parking, HSG D	
0.030 98 Roofs, HSG D	
0.130 80 >75% Grass cover, Good, HSG D	
0.210 87 Weighted Average	
0.130 61.90% Pervious Area	
0.080 38.10% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry,	
Subcatchment 201:	
Hydrograph	
0.95	+ + _ Runoff
^{0.8} _{0.75} 10-year Rainfall=5.	14"
0.7 Runoff Area=0.210	

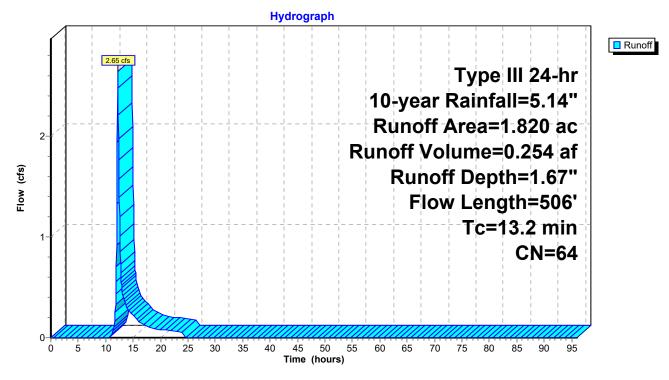

Summary for Subcatchment 202:

Runoff = 0.15 cfs @ 12.09 hrs, Volume= 0.012 af, Depth= 4.90"

Summary for Subcatchment 203:

Runoff = 0.15 cfs @ 12.09 hrs, Volume= 0.012 af, Depth= 4.90"

2021-04-28 Proposed	Type III 24-hr 10-year Rainfall=5.14"
Prepared by Langan Engineering and Environmental Service	s Printed 4/28/2021
HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solution	s LLC Page 49

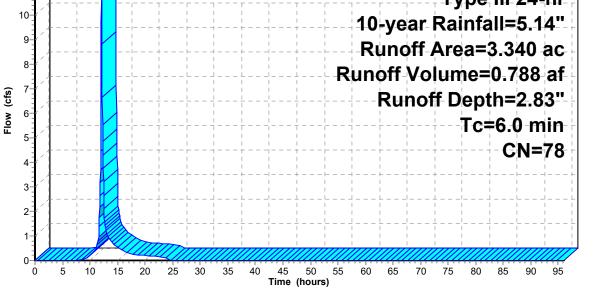

Summary for Subcatchment 300:

Runoff = 2.65 cfs @ 12.20 hrs, Volume= 0.254 af, Depth= 1.67"

Area	(ac) (CN Des	scription		
1.	110	60 Wo	ods, Fair, F	ISG B	
0.	390	73 Wo	ods, Fair, F	ISG C	
				, 0% imp, H	
				over, Good	·
	020			over, Good	, HSG C
0.	010	98 Pav	ed parking	, HSG B	
			ighted Avei		
	810		45% Pervio		
0.	010	0.5	5% Impervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)		(ft/sec)	(cfs)	Decemption
10.2	100				Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.41"
2.1	245	0.1500	1.94		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
0.9	161	0.3300	2.87		Shallow Concentrated Flow, C-D
					Woodland Kv= 5.0 fps
13.2	506	Total			

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

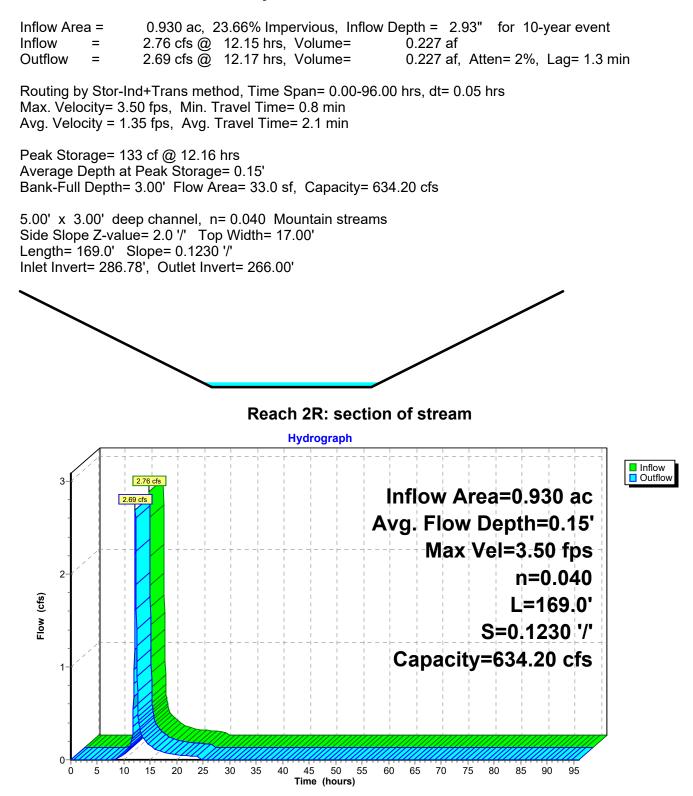
Subcatchment 300:



2021-04-28 Proposed	Type III 24-hr	10-year Rainfall=5.14"
Prepared by Langan Engineering and Environmental Service	S	Printed 4/28/2021
HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solution	s LLC	Page 51

Summary for Subcatchment 301:

Runoff = 10.87 cfs @ 12.09 hrs, Volume= 0.788 af, Depth= 2.83"


Area (ac)	CN	Description	_
0.470	98	Paved parking, HSG B	
0.100	98	Paved parking, HSG C	
0.360	98	Paved parking, HSG D	
0.080	98	Roofs, HSG B	
0.080	98	Roofs, HSG C	
0.250	60	Woods, Fair, HSG B	
0.150	73	Woods, Fair, HSG C	
0.120	79	Woods, Fair, HSG D	
0.890	61	>75% Grass cover, Good, HSG B	
0.530	74	>75% Grass cover, Good, HSG C	
0.310	80	>75% Grass cover, Good, HSG D	-
3.340	78	Weighted Average	
2.250		67.37% Pervious Area	
1.090		32.63% Impervious Area	
Tc Leng	ath S	Slope Velocity Capacity Description	
(min) (fe	-	(ft/ft) (ft/sec) (cfs)	
6.0		Direct Entry,	-
		Subcatchment 301:	
		Hydrograph	
12			
11	10.87 cfs	Type III 24-hr	
10			
		10-year Rainfall=5.14"	
9		$Pupoff \Lambda roa=3.340 ac$	

2021-04-28 Proposed Type III 24-hr 10-year Rainfall=5.14" Prepared by Langan Engineering and Environmental Services Printed 4/28/2021 HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Summary for Reach 2R: section of stream

Page 52

Stage-Storage 3 Storage 2-Depth (feet) 1 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 Ó Storage (cubic-feet)

Reach 2R: section of stream

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Elevation	End-Area	Storage	Flevation	End-Area	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
286.78	0.0	0	289.38	26.5	4,482
286.83	0.3	43	289.43	27.3	4,613
286.88	0.5	88	289.48	28.1	4,746
286.93	0.8	134	289.53	28.9	4,880
286.98	1.1	183	289.58	29.7	5,016
287.03	1.4	232	289.63	30.5	5,154
287.08	1.7	284	289.68	31.3	5,293
287.13	2.0	337	289.73	32.2	5,434
287.18	2.3	392	289.78	33.0	5,577
287.23	2.7	449	200.10	00.0	0,011
287.28	3.0	507			
287.33	3.4	567			
287.38	3.7	629			
287.43	4.1	692			
287.48	4.5	757			
287.53	4.9	824			
287.58	4.9 5.3	892			
287.63	5.7	963			
287.68	6.1	1,034			
287.00	6.6	1,108			
287.78	7.0	1,183			
287.83	7.5	1,103			
	7.5				
287.88 287.93		1,339			
	8.4 8.9	1,419			
287.98	8.9 9.4	1,501			
288.03	9.4 9.9	1,584			
288.08		1,670			
288.13	10.4 10.9	1,757			
288.18 288.23	10.9	1,846			
288.28	11.5	1,936			
288.33		2,028 2,122			
	12.6 13.1	2,122			
288.38	13.1				
288.43		2,314			
288.48	14.3	2,413			
288.53	14.9	2,514			
288.58	15.5 16.1	2,616			
288.63 288.68	16.7	2,720			
		2,826			
288.73 288.78	17.4	2,933			
288.83	18.0 18.7	3,042 3,153			
288.88	19.3	3,265			
	20.0	3,379			
288.93 288.98	20.0	3,379 3,495			
289.03	20.7	3,495			
289.03	21.4	3,732			
289.08	22.1	3,852			
289.13	22.0 23.5	3,852 3,975			
289.18	23.5	4,099			
289.23	24.3 25.0	4,099 4,225			
289.20	25.0	4,225 4,353			
209.00	20.0	4,000			
			I		

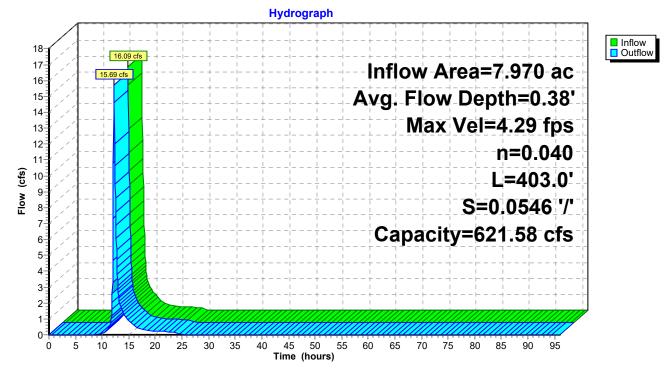
Stage-Area-Storage for Reach 2R: section of stream

2021-04-28 Proposed Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Summary for Reach 3R: section of stream

 Inflow Area =
 7.970 ac, 18.32% Impervious, Inflow Depth =
 1.92" for 10-year event

 Inflow =
 16.09 cfs @
 12.18 hrs, Volume=
 1.277 af


 Outflow =
 15.69 cfs @
 12.22 hrs, Volume=
 1.277 af, Atten= 2%, Lag= 2.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Max. Velocity= 4.29 fps, Min. Travel Time= 1.6 min Avg. Velocity = 1.17 fps, Avg. Travel Time= 5.7 min

Peak Storage= 1,501 cf @ 12.20 hrs Average Depth at Peak Storage= 0.38' Bank-Full Depth= 3.00' Flow Area= 45.0 sf, Capacity= 621.58 cfs

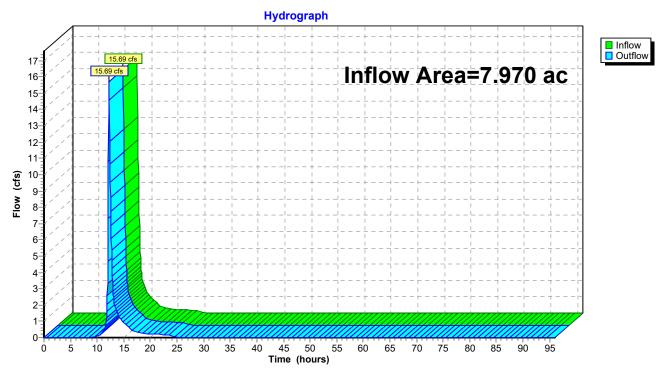
9.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 21.00' Length= 403.0' Slope= 0.0546 '/' Inlet Invert= 266.00', Outlet Invert= 244.00'

Stage-Storage 3 Storage 2-Depth (feet) 1 0-2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 ò Storage (cubic-feet)

Reach 3R: section of stream

Prepared by Langan Engineering and Environmental Services	
HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions	LLC

Stage-Area-Storage for Reach 3R: section of stream


Elevation	End-Area	Storage	Elevation	End-Area	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
266.00	0.0	0	268.60	36.9	14,879
266.05	0.5	184	268.65	37.9	15,272
266.10	0.9	371	268.70	38.9	15,669
266.15	1.4	562	268.75	39.9	16,070
266.20	1.9	758	268.80	40.9	16,475
266.25	2.4	957	268.85	41.9	16,884
266.30	2.9	1,161	268.90	42.9	17,297
266.35	3.4	1,368	268.95	44.0	17,714
266.40	3.9	1,580	269.00	45.0	18,135
266.45	4.5	1,795			
266.50	5.0	2,015			
266.55	5.6	2,239			
266.60	6.1	2,466			
266.65	6.7	2,698			
266.70	7.3	2,934			
266.75	7.9	3,174			
266.80	8.5	3,418			
266.85 266.90	9.1 9.7	3,665 3,917			
266.95	10.4	4,173			
267.00	11.0	4,433			
267.05	11.7	4,697			
267.10	12.3	4,965			
267.15	13.0	5,237			
267.20	13.7	5,513			
267.25	14.4	5,793			
267.30	15.1	6,077			
267.35	15.8	6,365			
267.40	16.5	6,658			
267.45	17.3	6,954			
267.50	18.0	7,254			
267.55	18.8	7,558			
267.60	19.5	7,867			
267.65	20.3	8,179			
267.70	21.1	8,495			
267.75	21.9	8,816			
267.80 267.85	22.7 23.5	9,140			
267.85	23.3	9,469 9,801			
267.95	24.3	10,137			
268.00	26.0	10,478			
268.05	26.9	10,823			
268.10	27.7	11,171			
268.15	28.6	11,524			
268.20	29.5	11,881			
268.25	30.4	12,241			
268.30	31.3	12,606			
268.35	32.2	12,975			
268.40	33.1	13,347			
268.45	34.1	13,724			
268.50	35.0	14,105			
268.55	36.0	14,490			
			I		

2021-04-28 Proposed	Type III 24-hr	10-year Rainfall=5.14"
Prepared by Langan Engineering and Environmental Service	S	Printed 4/28/2021
HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solution	s LLC	Page 58

Summary for Reach DP-1:

Inflow Area	a =	7.970 ac, 18.32% Impervious, Inflow Depth = 1.92" for 10-year event
Inflow	=	15.69 cfs @ 12.22 hrs, Volume= 1.277 af
Outflow	=	15.69 cfs @ 12.22 hrs, Volume= 1.277 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Reach DP-1:

Summary for Pond 1P: Lot 1 cultec

Inflow Area =	0.210 ac, 38.10% Impervious, Inflow De	epth = 3.70" for 10-year event
Inflow =	0.87 cfs @ 12.09 hrs, Volume=	0.065 af
Outflow =	0.69 cfs @ 12.16 hrs, Volume=	0.065 af, Atten= 21%, Lag= 4.1 min
Discarded =	0.04 cfs @ 10.75 hrs, Volume=	0.034 af
Primary =	0.65 cfs @ 12.16 hrs, Volume=	0.030 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 301.62' @ 12.16 hrs Surf.Area= 429 sf Storage= 321 cf

Plug-Flow detention time= 13.7 min calculated for 0.065 af (100% of inflow) Center-of-Mass det. time= 13.6 min (813.9 - 800.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	300.40'	153 cf	6.33'W x 24.50'L x 3.54'H Field A
			550 cf Overall - 168 cf Embedded = 382 cf x 40.0% Voids
#2A	300.90'	168 cf	Cultec R-330XLHD x 3 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 1 rows
#3B	300.40'	253 cf	11.17'W x 24.50'L x 3.54'H Field B
			969 cf Overall - 335 cf Embedded = 634 cf x 40.0% Voids
#4B	300.90'	335 cf	Cultec R-330XLHD x 6 Inside #3
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 2 rows
		909 cf	Total Available Storage

909 cf I otal Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	300.90'	6.0" Round Culvert
			L= 26.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 300.90' / 300.00' S= 0.0346 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
#2	Discarded	300.40'	4.100 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.04 cfs @ 10.75 hrs HW=300.44' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.64 cfs @ 12.16 hrs HW=301.61' (Free Discharge) **1=Culvert** (Inlet Controls 0.64 cfs @ 3.27 fps)

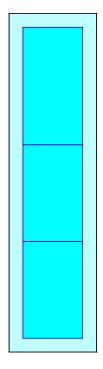
Pond 1P: Lot 1 cultec - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 1 rows

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length

1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width


6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height

3 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 1 Rows = 167.6 cf Chamber Storage

549.5 cf Field - 167.6 cf Chambers = 381.9 cf Stone x 40.0% Voids = 152.8 cf Stone Storage

Chamber Storage + Stone Storage = 320.4 cf = 0.007 af Overall Storage Efficiency = 58.3% Overall System Size = 24.50' x 6.33' x 3.54'

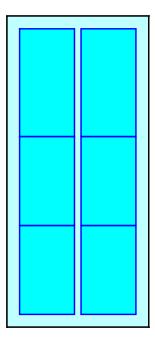
3 Chambers 20.4 cy Field 14.1 cy Stone

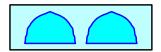
Pond 1P: Lot 1 cultec - Chamber Wizard Field B

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 2 rows

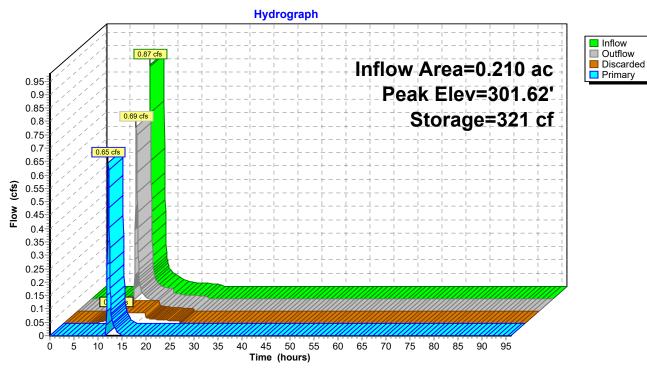
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

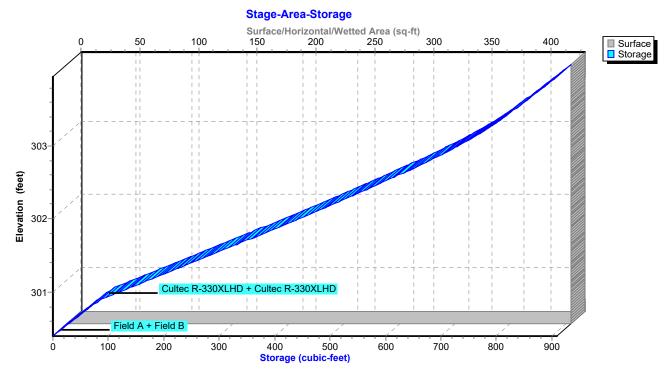

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length 2 Rows x 52.0" Wide + 6.0" Spacing x 1 + 12.0" Side Stone x 2 = 11.17' Base Width 6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height


6 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 2 Rows = 335.3 cf Chamber Storage

968.9 cf Field - 335.3 cf Chambers = 633.6 cf Stone x 40.0% Voids = 253.5 cf Stone Storage

Chamber Storage + Stone Storage = 588.8 cf = 0.014 afOverall Storage Efficiency = 60.8%Overall System Size = $24.50' \times 11.17' \times 3.54'$


6 Chambers 35.9 cy Field 23.5 cy Stone



Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Pond 1P: Lot 1 cultec

Pond 1P: Lot 1 cultec

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

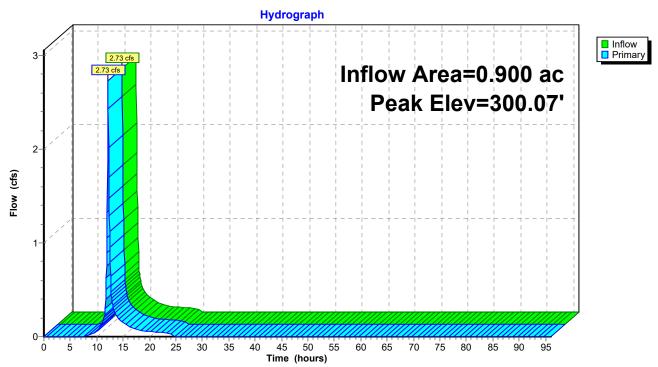
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
300.40	429	0	303.00	429	732
300.45	429	9	303.05	429	744
300.50	429	17	303.10	429	756
300.55	429	26	303.15	429	767
300.60	429	34	303.20	429	778
300.65	429	43	303.25	429	788
300.70	429	51	303.30	429	798
300.75	429	60	303.35	429	807
300.80	429	69	303.40	429	816
300.85	429	77	303.45	429	825
300.90	429	86	303.50	429	833
300.95	429	102	303.55	429	842
301.00	429	119	303.60	429	851
301.05	429	136	303.65	429	859
301.10	429	152	303.70	429	868
301.15	429	168	303.75	429	876
301.20	429	185	303.80	429	885
301.25	429	201	303.85	429	893
301.30	429	218	303.90	429	902
301.35	429	234			••-
301.40	429	251			
301.45	429	267			
301.50	429	283			
301.55	429	299			
301.60	429	316			
301.65	429	332			
301.70	429	347			
301.75	429	363			
301.80	429	379			
301.85	429	395			
301.90	429	411			
301.95	429	427			
302.00	429	443			
302.05	429	459			
302.10	429	474			
302.15	429	490			
302.20	429	505			
302.25	429	521			
302.30	429	536			
302.35	429	551			
302.40	429	566			
302.45	429	581			
302.50	429	595			
302.55	429	610			
302.60	429	624			
302.65	429	638			
302.70	429	652			
302.75	429	666			
302.80	429	680			
302.85	429	693			
302.90	429	706			
302.95	429	719			
			l		

Stage-Area-Storage for Pond 1P: Lot 1 cultec

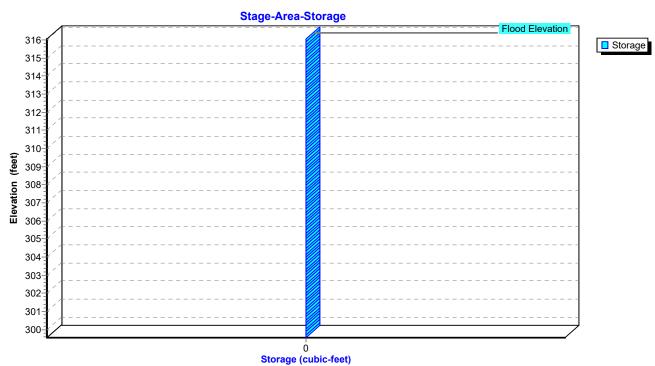
Summary for Pond 1R: twin 48" culverts

Inflow Area	ı =	0.900 ac, 21.11% Impervious, Inflow Depth = 3.02" for 10-year event
Inflow	=	2.73 cfs @ 12.15 hrs, Volume= 0.226 af
Outflow	=	2.73 cfs @ 12.15 hrs, Volume= 0.226 af, Atten= 0%, Lag= 0.0 min
Primary	=	2.73 cfs @ 12.15 hrs, Volume= 0.226 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 300.07' @ 12.15 hrs Flood Elev= 316.05'


Device	Routing	Invert	Outlet Devices
#1	Primary	299.55'	48.0" Round Culvert L= 182.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 299.55' / 286.78' S= 0.0702 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 12.57 sf
#2	Primary	299.90'	48.0" Round Culvert L= 180.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 299.90' / 287.92' S= 0.0666 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 12.57 sf

Primary OutFlow Max=2.65 cfs @ 12.15 hrs HW=300.07' (Free Discharge)


1=Culvert (Inlet Controls 2.38 cfs @ 2.46 fps)

2=Culvert (Inlet Controls 0.27 cfs @ 1.42 fps)

Pond 1R: twin 48" culverts

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Pond 1R: twin 48" culverts

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 1R: twin 48" culverts

	•	I ·=	C
Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
299.55	0	309.95	0
299.75	0	310.15	0
299.95	0	310.35	0
300.15	0	310.55	0
300.35	0	310.75	0
300.55	0	310.95	0
300.75	0	311.15	0
300.95	0	311.35 311.55	0
301.15 301.35	0 0	311.55	0
301.55	0	311.75	0 0
301.55	0	312.15	0
301.95	0	312.15	0
302.15	0	312.55	0
302.35	0	312.55	0
302.55	0	312.95	0
302.75	0	313.15	0
302.95	0	313.35	0
303.15	0	313.55	0
303.35	0	313.75	0
303.55	ů 0	313.95	0 0
303.75	Õ	314.15	Ő
303.95	0 0	314.35	0 0
304.15	Õ	314.55	Ő
304.35	Ő	314.75	0 0
304.55	0	314.95	0
304.75	Ō	315.15	0
304.95	0	315.35	0
305.15	0	315.55	0
305.35	0	315.75	0
305.55	0	315.95	0
305.75	0		
305.95	0		
306.15	0		
306.35	0		
306.55	0		
306.75	0		
306.95	0		
307.15	0		
307.35	0		
307.55	0		
307.75	0		
307.95	0		
308.15	0		
308.35	0		
308.55 308.75	0		
	0		
308.95 309.15	0 0		
309.15 309.35	0		
309.35 309.55	0		
309.55 309.75	0		
503.15	0		
		I	

Summary for Pond 2P: Lot 2 cultec

Inflow Area =	0.030 ac,100.00% Impervious, Inflow De	epth = 4.90" for 10-year event
Inflow =	0.15 cfs @ 12.09 hrs, Volume=	0.012 af
Outflow =	0.07 cfs @ 12.24 hrs, Volume=	0.012 af, Atten= 49%, Lag= 9.1 min
Discarded =	0.03 cfs @ 11.75 hrs, Volume=	0.011 af
Primary =	0.05 cfs @ 12.24 hrs, Volume=	0.001 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 311.02' @ 12.24 hrs Surf.Area= 310 sf Storage= 90 cf

Plug-Flow detention time= 12.0 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 12.0 min (759.5 - 747.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	310.40'	153 cf	6.33'W x 24.50'L x 3.54'H Field A
			550 cf Overall - 168 cf Embedded = 382 cf x 40.0% Voids
#2A	310.90'	168 cf	Cultec R-330XLHD x 3 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 1 rows
#3B	310.40'	153 cf	6.33'W x 24.50'L x 3.54'H Field B
			550 cf Overall - 168 cf Embedded = 382 cf x 40.0% Voids
#4B	310.90'	168 cf	Cultec R-330XLHD x 3 Inside #3
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 1 rows
		641 cf	Total Available Storage

641 CT Total Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	310.90'	6.0" Round Culvert
	•		L= 21.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 310.90' / 310.00' S= 0.0429 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
#2	Discarded	310.40'	4.100 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.03 cfs @ 11.75 hrs HW=310.44' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.04 cfs @ 12.24 hrs HW=311.02' (Free Discharge) **1=Culvert** (Inlet Controls 0.04 cfs @ 1.19 fps)

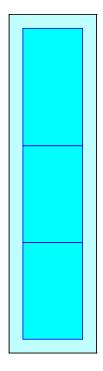
Pond 2P: Lot 2 cultec - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 1 rows

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length

1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width


6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height

3 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 1 Rows = 167.6 cf Chamber Storage

549.5 cf Field - 167.6 cf Chambers = 381.9 cf Stone x 40.0% Voids = 152.8 cf Stone Storage

Chamber Storage + Stone Storage = 320.4 cf = 0.007 af Overall Storage Efficiency = 58.3% Overall System Size = 24.50' x 6.33' x 3.54'

3 Chambers 20.4 cy Field 14.1 cy Stone

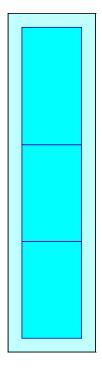
Pond 2P: Lot 2 cultec - Chamber Wizard Field B

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 1 rows

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length

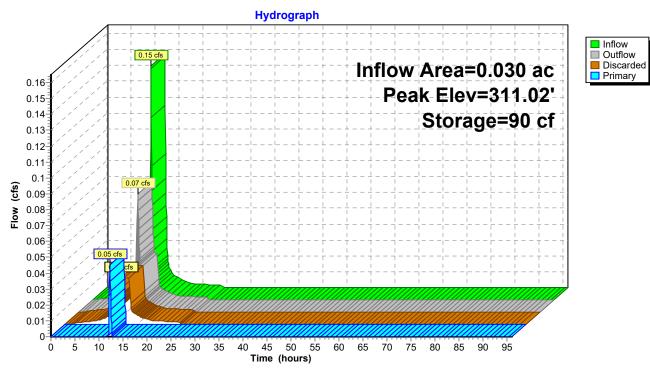
1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width

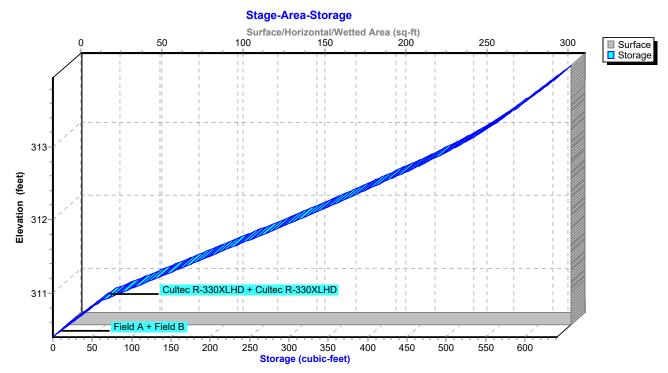

6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height

3 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 1 Rows = 167.6 cf Chamber Storage

549.5 cf Field - 167.6 cf Chambers = 381.9 cf Stone x 40.0% Voids = 152.8 cf Stone Storage

Chamber Storage + Stone Storage = 320.4 cf = 0.007 af Overall Storage Efficiency = 58.3% Overall System Size = 24.50' x 6.33' x 3.54'


3 Chambers 20.4 cy Field 14.1 cy Stone



Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Pond 2P: Lot 2 cultec

Pond 2P: Lot 2 cultec

Surface

Elevation

312.40

312.45

312.50 312.55

312.60

312.65

312.70

312.75

312.80

312.85

312.90

312.95

Storage

Prepared by Langan Engine	eering and Environmental Services
HydroCAD® 10.00-18 s/n 1101	1 © 2016 HydroCAD Software Solutions LLC

Storage

(feet) (cubic-feet) (feet) (cubic-feet) (sq-ft) (sq-ft) 310.40 313.00 310.45 313.05 310.50 313.10 310.55 313.15 310.60 313.20 313.25 310.65 310.70 313.30 310.75 313.35 310.80 313.40 310.85 313.45 310.90 313.50 310.95 313.55 311.00 313.60 311.05 313.65 311.10 313.70 311.15 313.75 311.20 313.80 313.85 311.25 311.30 313.90 311.35 311.40 311.45 311.50 311.55 311.60 311.65 311.70 311.75 311.80 311.85 311.90 311.95 312.00 312.05 312.10 312.15 312.20 312.25 312.30 312.35

Stage-Area-Storage for Pond 2P: Lot 2 cultec

Surface

Elevation

Summary for Pond 3P: Lot 4 cultec

Inflow Area =	0.030 ac,100.00% Impervious, Inflow De	epth = 4.90" for 10-year event
Inflow =	0.15 cfs @ 12.09 hrs, Volume=	0.012 af
Outflow =	0.07 cfs @ 12.24 hrs, Volume=	0.012 af, Atten= 49%, Lag= 9.1 min
Discarded =	0.03 cfs @ 11.75 hrs, Volume=	0.011 af
Primary =	0.05 cfs @ 12.24 hrs, Volume=	0.001 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 292.02' @ 12.24 hrs Surf.Area= 310 sf Storage= 90 cf

Plug-Flow detention time= 12.0 min calculated for 0.012 af (100% of inflow) Center-of-Mass det. time= 12.0 min (759.5 - 747.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	291.40'	153 cf	6.33'W x 24.50'L x 3.54'H Field A
			550 cf Overall - 168 cf Embedded = 382 cf x 40.0% Voids
#2A	291.90'	168 cf	Cultec R-330XLHD x 3 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 1 rows
#3B	291.40'	153 cf	6.33'W x 24.50'L x 3.54'H Field B
			550 cf Overall - 168 cf Embedded = 382 cf x 40.0% Voids
#4B	291.90'	168 cf	Cultec R-330XLHD x 3 Inside #3
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 1 rows
		641 cf	Total Available Storage

641 CT Total Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	291.90'	6.0" Round Culvert
	•		L= 20.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 291.90' / 291.00' S= 0.0450 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
#2	Discarded	291.40'	4.100 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.03 cfs @ 11.75 hrs HW=291.44' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.04 cfs @ 12.24 hrs HW=292.02' (Free Discharge) **1=Culvert** (Inlet Controls 0.04 cfs @ 1.19 fps)

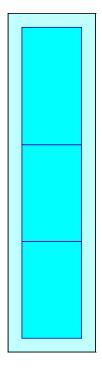
Pond 3P: Lot 4 cultec - Chamber Wizard Field A

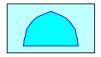
Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 1 rows

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length

1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width


6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height


3 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 1 Rows = 167.6 cf Chamber Storage

549.5 cf Field - 167.6 cf Chambers = 381.9 cf Stone x 40.0% Voids = 152.8 cf Stone Storage

Chamber Storage + Stone Storage = 320.4 cf = 0.007 af Overall Storage Efficiency = 58.3% Overall System Size = 24.50' x 6.33' x 3.54'

3 Chambers 20.4 cy Field 14.1 cy Stone

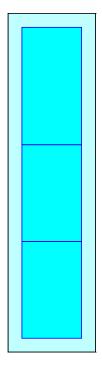
Pond 3P: Lot 4 cultec - Chamber Wizard Field B

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 1 rows

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length

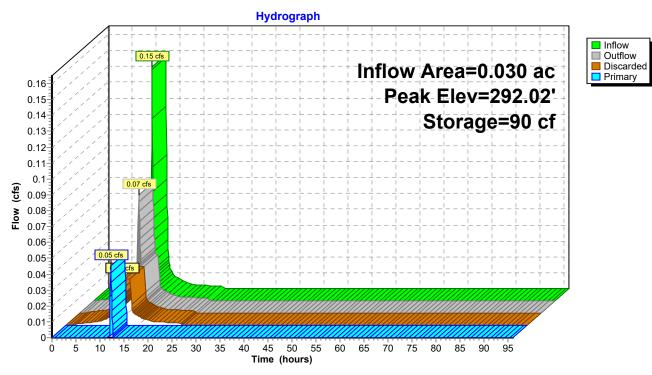
1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width

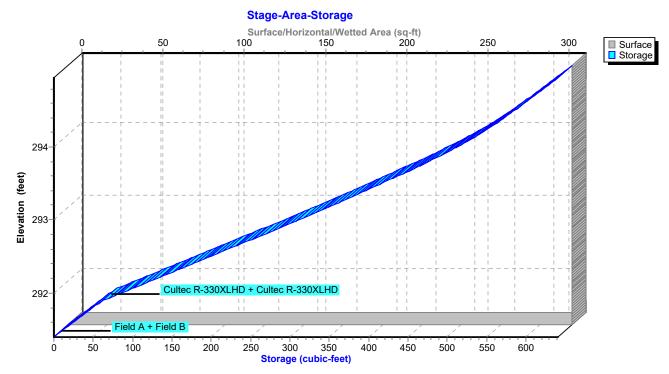

6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height

3 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 1 Rows = 167.6 cf Chamber Storage

549.5 cf Field - 167.6 cf Chambers = 381.9 cf Stone x 40.0% Voids = 152.8 cf Stone Storage

Chamber Storage + Stone Storage = 320.4 cf = 0.007 af Overall Storage Efficiency = 58.3% Overall System Size = 24.50' x 6.33' x 3.54'


3 Chambers 20.4 cy Field 14.1 cy Stone



Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Pond 3P: Lot 4 cultec

Pond 3P: Lot 4 cultec

Prepared by Langan Engine	ering and Environmental Services
HydroCAD® 10.00-18 s/n 11011	© 2016 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
291.40	310	0	294.00	310	513
291.45	310	6	294.05	310	522
291.50	310	12	294.10	310	530
291.55	310	19	294.15	310	538
291.60	310	25	294.20	310	546
291.65	310	31	294.25	310	553
291.70	310	37	294.30	310	560
291.75	310	43	294.35	310	567
291.80	310	50	294.40	310	574
291.85	310	56	294.45	310	580
291.90	310	62	294.50	310	586
291.95	310	74	294.55	310	592
292.00	310	85	294.60	310	598
292.05	310	97	294.65	310	605
292.10	310	108	294.70	310	611
292.15	310	120	294.75	310	617
292.20	310	131	294.80	310	623
292.25	310 310	143	294.85	310	629
292.30 292.35	310	154 165	294.90	310	636
292.35	310				
292.40	310	177 188			
292.45	310	200			
292.50	310	200			
292.60	310	211			
292.65	310	233			
292.00	310	233			
292.75	310	256			
292.80	310	267			
292.85	310	278			
292.90	310	289			
292.95	310	300			
293.00	310	311			
293.05	310	322			
293.10	310	333			
293.15	310	344			
293.20	310	355			
293.25	310	365			
293.30	310	376			
293.35	310	386			
293.40	310	397			
293.45	310	407			
293.50	310	418			
293.55	310	428			
293.60	310	438			
293.65	310	448			
293.70	310	457			
293.75	310	467			
293.80	310	477			
293.85	310	486			
293.90	310	495			
293.95	310	504			

Stage-Area-Storage for Pond 3P: Lot 4 cultec

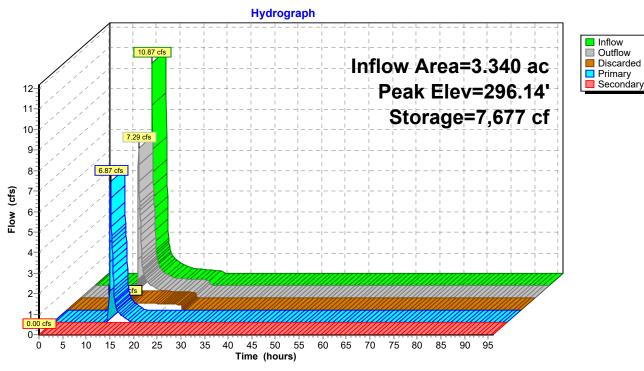
Summary for Pond 4P: infiltration basin

Inflow Area =	3.340 ac, 32.63% Impervious, Inflow	Depth = 2.83" for 10-year event
Inflow =	10.87 cfs @ 12.09 hrs, Volume=	0.788 af
Outflow =	7.29 cfs @ 12.20 hrs, Volume=	0.788 af, Atten= 33%, Lag= 6.5 min
Discarded =	0.42 cfs @ 12.20 hrs, Volume=	0.386 af
Primary =	6.87 cfs @ 12.20 hrs, Volume=	0.402 af
Secondary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

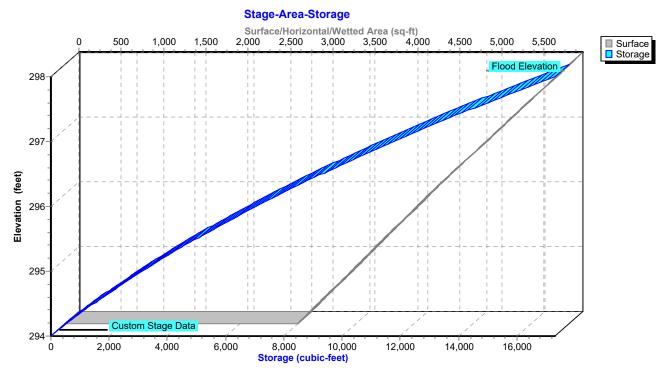
Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 296.14' @ 12.20 hrs Surf.Area= 4,419 sf Storage= 7,677 cf Flood Elev= 298.00' Surf.Area= 5,955 sf Storage= 17,305 cf

Plug-Flow detention time= 61.6 min calculated for 0.788 af (100% of inflow) Center-of-Mass det. time= 61.6 min (887.4 - 825.9)

Volume	Invert	Avail.Sto	rage Storage D	escription	
#1	294.00'	17,30	05 cf Custom S	Stage Data (Pr	ismatic) Listed below (Recalc)
Elevatio		Irf.Area	Inc.Store	Cum.Store	
				•	
(fee	1	(sq-ft)	(cubic-feet)	(cubic-feet)	
294.0	00	2,750	0	0	
296.0	00	4,300	7,050	7,050	
298.0	00	5,955	10,255	17,305	
Device	Routing	Invert	Outlet Devices		
#1	Primary	290.40'	15.0" Round (Culvert	
			L= 16.0' CPP,	square edge h	neadwall, Ke= 0.500
			Inlet / Outlet Inv	/ert= 290.40'/	288.00' S= 0.1500 '/' Cc= 0.900
			n= 0.013 Corri	idated PF smo	both interior, Flow Area= 1.23 sf
#2	Device 1	295.00'	24.0" W x 6.0"		
#3	Device 1	296.00'	30.0" x 48.0" H		
	201100 1		Limited to weir		
#4	Secondary	297.00')' rise Emergency spillway
<i>n</i> - -	Cocondary	201.00	Cv= 2.47 (C= 3	•	
#5	Discarded	294.00'	4.100 in/hr Ext	,	Surface area
#5	Discarded	294.00	4.100 III/III EXI		Suilace alea
Discard		Max=0.42 cf	e @ 12.20 hre. H	IVV-206 14' (F	Free Discharge)


Discarded OutFlow Max=0.42 cfs @ 12.20 hrs HW=296.14' (Free Discharge) **5=Exfiltration** (Exfiltration Controls 0.42 cfs)

Primary OutFlow Max=6.82 cfs @ 12.20 hrs HW=296.14' (Free Discharge) -1=Culvert (Passes 6.82 cfs of 13.37 cfs potential flow) **2=Slot** (Orifice Controls 4.53 cfs @ 4.53 fps) **3=Grate** (Weir Controls 2.29 cfs @ 1.23 fps)


Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=294.00' (Free Discharge) 4=Emergency spillway (Controls 0.00 cfs)

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Pond 4P: infiltration basin

Prepared by Langan Engine	ering and Environmental Services
HydroCAD® 10.00-18 s/n 11011	© 2016 HydroCAD Software Solutions LLC

ElevationSurfaceStorage (feet)ElevationSurfaceStorage (soft)294.002,7500296.604,7979,779294.102,828279296.704,87910,263294.102,828279296.704,87910,263294.252,944712296.804,92110,508294.353,0211,010296.955,08611,255294.453,0991,316297.005,16912,021294.553,1761,630297.155,25212,841294.453,0991,316297.105,21012,281294.553,1761,630297.205,28312,806294.603,2151,790297.205,23313,609294.603,2711,951297.255,34413,619294.703,2922,115297.305,37613,339294.703,2922,115297.505,54114,431294.853,4092,617297.555,58314,709295.003,5643,315297.605,64513,281294.953,4662,962297.555,58314,709295.103,6443,675297.755,74815,842295.153,6413,675297.755,74815,842295.053,9905,392297.505,64114,431295.253,7194,043297.905,87216,714 </th <th></th> <th></th> <th></th> <th>I</th> <th></th> <th></th>				I		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
294.052.789138296.654.83810.020294.102.828279296.704.87910.263294.152.966421296.754.92110.508294.202.905565296.804.96210.755294.252.944712296.855.00311.004294.302.983860296.905.04511.255294.353.0211.010296.955.08611.508294.443.0601.162297.005.12811.764294.453.0991.316297.055.16912.021294.553.1761.630297.155.25212.542294.663.2151.790297.205.29312.806294.653.2541.951297.255.33413.071294.703.2922.115297.305.37613.339294.753.3312.280297.355.41713.609294.803.3702.448297.405.45813.881294.803.3702.448297.505.54114.431294.903.4472.789297.505.54114.431294.903.6413.675297.755.74815.842295.053.6413.675297.755.74815.842295.053.6413.675297.755.74815.842295.053.9515.392295.553.9515.392295.654.029<			(cubic-feet)			
294 102.828279296.704.87910.263294.152.866421296.754.92110,508294.202.905565296.804.96210,755294.252.944712296.855.00311,004294.302.983860296.905.04511,255294.353.0211.010296.955.08611,508294.403.0601,162297.005.18912.021294.503.1381.472297.105.21012,281294.553.1761.630297.155.25212,542294.603.2151.790297.205.29312,806294.653.2541.951297.255.33413.071294.753.3312.280297.355.41713.609294.853,4092.617297.455.50014,155294.903.4472.789297.505.58314,709295.053.5643.315297.655.66515,271295.103,6033.494297.705.70715.556295.153,6413.675297.755.74815.842295.253.7194.043297.865.83116.421295.253.9134.290298.005.95517.305295.553.8344.099298.005.95517.305295.553.9515.9904.2226.624295.503.9134.997	294.00	2,750	0	296.60	4,797	9,779
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	294.05	2,789	138	296.65	4,838	10,020
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	294.10	2,828	279	296.70	4,879	10,263
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	294.15			296.75		
294.25 2.944 712 296.85 5.003 11,004 294.30 2.963 860 296.90 5.045 11,255 294.35 3.021 1.010 296.95 5.086 11,508 294.40 3.060 1.162 297.00 5.128 11,764 294.45 3.099 1.316 297.05 5.169 12.021 294.55 3.176 1.630 297.15 5.252 12.806 294.65 3.215 1.790 297.20 5.293 12.806 294.65 3.254 1.951 297.25 5.334 13.071 294.70 3.292 2.115 297.35 5.417 13.609 294.75 3.331 2.206 297.35 5.541 14.431 294.80 3.370 2.448 297.40 5.458 13.881 294.80 3.447 2.789 297.50 5.541 14.431 294.95 3.486 2.962 297.55 5.563						
294.30 2.983 860 296.90 5.045 11,255 294.35 3.021 1.010 296.95 5.086 11,508 294.40 3.060 1.162 297.00 5.128 11,764 294.45 3.099 1.316 297.05 5.169 12,021 294.50 3.138 1.472 297.10 5.210 12,281 294.60 3.215 1.790 297.20 5.223 12,806 294.65 3.254 1.951 297.30 5.376 13,339 294.70 3.292 2.115 297.30 5.447 13.609 294.85 3.409 2.617 297.45 5.500 14,155 294.90 3.447 2.789 297.50 5.541 14,431 294.95 3.486 2.962 297.55 5.583 14,709 295.00 3.525 3.138 297.60 5.624 14.989 295.01 3.603 3.494 297.70 5.707						
294.35 $3,021$ $1,010$ 296.95 $5,086$ $11,508$ 294.40 $3,060$ $1,162$ 297.00 $5,128$ $11,764$ 294.45 $3,099$ $1,316$ 297.05 $5,169$ $2,021$ 294.55 $3,176$ 1.630 297.15 $5,252$ $12,542$ 294.60 $3,215$ $1,790$ 297.20 $5,293$ $12,806$ 294.65 $3,254$ $1,951$ 297.30 $5,376$ $13,339$ 294.75 $3,331$ $2,280$ 297.35 $5,417$ $13,609$ 294.80 $3,370$ $2,448$ 297.40 $5,458$ $13,881$ 294.85 $3,409$ $2,617$ 297.45 $5,500$ $14,155$ 294.90 $3,447$ $2,789$ 297.50 $5,541$ $14,431$ 294.95 $3,686$ $2,962$ 297.55 $5,583$ $14,709$ 295.00 $3,525$ $3,138$ 297.60 $5,624$ $4,989$ 295.05 $3,644$ $3,675$ 297.75 $5,748$ $15,842$ 295.10 $3,603$ $3,494$ 297.70 $5,707$ $15,556$ 295.15 $3,641$ $3,675$ 297.75 $5,748$ $15,842$ 295.20 $3,680$ $3,858$ 297.80 $5,955$ $17,305$ 295.55 $3,913$ $4,997$ $5,955$ $17,305$ 295.55 $3,913$ $4,997$ $5,955$ $17,305$ 295.66 $4,067$ $5,922$ 296.05 $4,222$ $6,624$ 295.95 $4,221$ $6,624$ $4,62$						
294.40 $3,060$ $1,162$ 297.00 $5,128$ $11,764$ 294.45 $3,138$ $1,472$ 297.10 $5,210$ $12,021$ 294.55 $3,176$ $1,630$ 297.15 $5,252$ $12,542$ 294.65 $3,215$ $1,790$ 297.20 $5,293$ $12,806$ 294.65 $3,254$ $1,951$ 297.25 $5,334$ $13,071$ 294.70 $3,292$ $2,115$ 297.30 $5,376$ $13,339$ 294.75 $3,331$ $2,280$ 297.35 $5,417$ $13,609$ 294.80 $3,370$ $2,448$ 297.40 $5,458$ $13,881$ 294.85 $3,409$ $2,617$ 297.45 $5,500$ $14,155$ 294.90 $3,447$ $2,789$ 297.50 $5,541$ $14,431$ 294.95 $3,664$ $2,962$ 297.55 $5,583$ $14,709$ 295.00 $3,525$ $3,138$ 297.60 $5,665$ $15,271$ 295.10 $3,663$ $3,494$ 297.70 $5,707$ $15,556$ 295.15 $3,641$ $3,675$ 297.80 $5,790$ $16,131$ 295.20 $3,680$ $3,858$ 297.80 $5,790$ $16,131$ 295.25 $3,719$ $4,043$ 297.90 $5,872$ $16,714$ 295.30 $3,758$ $4,230$ 297.90 $5,872$ $16,714$ 295.55 $3,951$ $5,193$ 295.60 $3,990$ $5,392$ 295.55 $3,951$ $5,193$ 298.00 $5,955$ $17,305$ 295.55						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
294.50 $3,138$ 1.472 297.10 $5,210$ $12,281$ 294.55 $3,176$ $1,630$ 297.15 $5,252$ $12,542$ 294.60 $3,215$ $1,790$ 297.20 $5,293$ $12,806$ 294.65 $3,254$ $1,951$ 297.20 $5,376$ $13,339$ 294.75 $3,331$ $2,280$ 297.35 $5,417$ $13,609$ 294.80 $3,370$ $2,448$ 297.40 $5,458$ $13,881$ 294.85 $3,409$ $2,617$ 297.45 $5,500$ $14,155$ 294.90 $3,447$ $2,789$ 297.50 $5,541$ $14,431$ 294.95 $3,466$ $2,962$ 297.55 $5,583$ $14,709$ 295.00 $3,525$ $3,138$ 297.60 $5,624$ $4,989$ 295.05 $3,564$ $3,315$ 297.65 $5,665$ $5,271$ 295.10 $3,603$ $3,494$ 297.70 $5,707$ $15,556$ 295.15 $3,641$ $3,675$ 297.75 $5,748$ $15,842$ 295.20 $3,680$ $3,858$ 297.80 $5,790$ $16,131$ 295.25 $3,719$ $4,043$ 297.85 $5,831$ $16,421$ 295.35 $3,796$ $4,419$ 297.90 $5,872$ $16,714$ 295.55 $3,913$ $4,997$ 298.00 $5,955$ $17,305$ 295.65 $4,261$ $6,336$ $296,624$ 295.95 $4,261$ $6,336$ 295.65 $4,145$ $6,206$ 298.00 $5,955$ $17,305$ 295.55 $4,261$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
294.60 3.215 1.790 297.20 5.293 12.806 294.65 3.254 1.951 297.25 5.334 13.071 294.70 3.292 2.115 297.30 5.376 13.339 294.75 3.331 2.280 297.35 5.417 13.609 294.80 3.370 2.448 297.45 5.500 4.155 294.90 3.447 2.789 297.50 5.541 14.431 294.95 3.486 2.962 297.55 5.583 14.709 295.00 3.525 3.138 297.60 5.624 14.989 295.05 3.564 3.315 297.65 5.665 15.271 295.10 3.603 3.494 297.75 5.707 15.566 295.15 3.641 3.675 297.75 5.748 15.842 295.20 3.680 3.858 297.80 5.700 16.131 295.25 3.719 4.043 297.85 5.831 16.421 295.30 3.758 4.230 297.95 5.914 17.008 295.40 3.835 4.609 298.00 5.955 17.305 295.55 3.951 5.193 295.66 4.029 5.952 295.75 4.106 5.999 295.85 4.184 6.214 295.90 4.222 6.624 4.531 8.337 296.65 4.341 7.266 296.15 4.507 8.151 296.25 4.507 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>,</td></td<>						,
294.65 $3,254$ $1,951$ 297.25 $5,334$ $13,071$ 294.70 $3,292$ $2,115$ 297.35 $5,376$ $13,339$ 294.75 $3,331$ $2,280$ 297.35 $5,417$ $13,609$ 294.80 $3,370$ $2,448$ 297.40 $5,458$ $13,881$ 294.85 $3,409$ $2,617$ 297.45 $5,500$ $14,155$ 294.90 $3,447$ $2,789$ 297.50 $5,541$ $14,451$ 294.95 $3,486$ $2,962$ 297.55 $5,583$ $14,709$ 295.00 $3,525$ $3,138$ 297.65 $5,665$ $15,271$ 295.10 $3,603$ $3,494$ 297.70 $5,707$ $15,556$ 295.15 $3,641$ $3,675$ 297.75 $5,748$ $15,842$ 295.20 $3,680$ $3,858$ 297.80 $5,700$ $16,131$ 295.25 $3,719$ $4,043$ 297.85 $5,831$ $16,421$ 295.30 $3,758$ $4,230$ 297.90 $5,872$ $16,714$ 295.55 $3,951$ $5,193$ 297.95 $5,914$ $1,008$ 295.66 $4,029$ $5,592$ $5,592$ $17,305$ 295.75 $4,106$ $5,999$ 298.00 $5,955$ $17,305$ 296.05 $4,241$ $7,04$ 296.15 $4,261$ $6,836$ 296.00 $4,333$ $7,484$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ $6,969$ 296.65 $4,507$ <						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
294.85 $3,409$ $2,617$ 297.45 $5,500$ $14,155$ 294.90 $3,447$ $2,789$ 297.50 $5,541$ $14,431$ 294.95 $3,486$ $2,962$ 297.55 $5,583$ $14,709$ 295.00 $3,525$ $3,138$ 297.60 $5,624$ $14,989$ 295.05 $3,564$ $3,315$ 297.65 $5,6665$ $15,271$ 295.10 $3,603$ $3,494$ 297.70 $5,707$ $15,556$ 295.15 $3,641$ $3,675$ 297.75 $5,748$ $15,842$ 295.20 $3,680$ $3,858$ 297.80 $5,790$ $16,131$ 295.25 $3,719$ $4,043$ 297.85 $5,831$ $16,421$ 295.30 $3,758$ $4,230$ 297.90 $5,872$ $16,714$ 295.35 $3,796$ $4,419$ 297.95 $5,914$ $17,008$ 295.40 $3,835$ $4,609$ 298.00 $5,955$ $17,305$ 295.45 $3,874$ $4,802$ 295.55 $3,991$ $5,193$ 295.50 $3,990$ $5,392$ 295.70 $4,067$ $5,795$ 295.75 $4,106$ $5,999$ 295.86 $4,145$ $6,206$ 295.80 $4,145$ $6,206$ $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.25 $4,507$ $8,151$ 296.35 $4,509$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 4						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	295.05		3,315	297.65	5,665	15,271
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	295.10	3,603	3,494	297.70	5,707	15,556
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	295.15	3,641	3,675	297.75	5,748	15,842
295.30 3,758 4,230 297.90 5,872 16,714 295.35 3,796 4,419 297.95 5,914 17,008 295.40 3,835 4,609 298.00 5,955 17,305 295.45 3,874 4,802 295.50 3,913 4,997 295.50 3,913 4,997 295.65 3,951 5,193 295.60 3,990 5,392 295.65 4,029 5,592 295.70 4,067 5,795 295.75 4,106 5,999 295.80 4,145 6,206 295.85 4,184 6,414 295.90 4,222 6,624 295.95 4,261 6,836 296.00 4,330 7,050 296.05 4,341 7,266 296.15 4,424 7,704 296.25 4,507 8,151 296.20 4,655 7,927 296.25 4,507 8,151 296.31 4,548 8,377 296.35 4,500 8,606 296.45 4,672 9,069 296.50 4,714	295.20	3,680	3,858	297.80	5,790	16,131
295.30 3,758 4,230 297.90 5,872 16,714 295.35 3,796 4,419 297.95 5,914 17,008 295.40 3,835 4,609 298.00 5,955 17,305 295.45 3,874 4,802 298.00 5,955 17,305 295.50 3,913 4,997 298.00 5,955 17,305 295.60 3,990 5,392 295.65 4,029 5,592 295.70 4,067 5,795 295.75 4,106 5,999 295.80 4,145 6,206 295.85 4,184 6,414 295.90 4,222 6,624 295.95 4,261 6,836 296.05 4,341 7,766 296.05 4,341 7,764 296.20 4,465 7,927 296.25 4,507 8,151 296.20 4,631 8,836 296.45 4,672 9,069 296.50 4,714 9,303 1 303	295.25	3,719	4,043	297.85	5,831	16,421
295.35 3,796 4,419 297.95 5,914 17,008 295.40 3,835 4,609 298.00 5,955 17,305 295.45 3,874 4,802 298.00 5,955 17,305 295.50 3,913 4,997 295.55 3,951 5,193 295.60 3,990 5,392 295.65 4,029 5,592 295.70 4,067 5,795 295.75 4,106 5,999 295.80 4,145 6,206 295.85 4,184 6,414 295.90 4,222 6,624 295.95 4,261 6,836 296.00 4,300 7,050 296.05 4,341 7,266 296.15 4,424 7,704 296.25 4,507 8,151 296.25 4,507 8,151 296.30 4,631 8,836 296.40 4,631 8,836 296.40 4,631 8,836 296.45 4,672 9,069 296.50 4,714 9,303	295.30	3,758		297.90		
295.40 3,835 4,609 298.00 5,955 17,305 295.45 3,874 4,802 295.50 3,913 4,997 295.55 3,951 5,193 295.60 3,990 5,392 295.65 4,029 5,592 295.70 4,067 5,795 295.75 4,106 5,999 295.80 4,145 6,206 295.85 4,184 6,414 295.90 4,222 6,624 295.95 4,261 6,836 296.00 4,300 7,050 296.05 4,341 7,266 296.10 4,383 7,484 296.15 4,465 7,927 296.25 4,507 8,151 296.30 4,548 8,377 296.35 4,590 8,606 296.40 4,631 8,836 296.45 4,672 9,069 296.50 4,714 9,303						
295.45 $3,874$ $4,802$ 295.50 $3,913$ $4,997$ 295.55 $3,951$ $5,193$ 295.60 $3,990$ $5,392$ 295.65 $4,029$ $5,592$ 295.70 $4,067$ $5,795$ 295.75 $4,106$ $5,999$ 295.80 $4,145$ $6,206$ 295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.25 $4,507$ $8,151$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
295.50 $3,913$ $4,997$ 295.55 $3,951$ $5,193$ 295.60 $3,990$ $5,392$ 295.65 $4,029$ $5,592$ 295.70 $4,067$ $5,795$ 295.75 $4,106$ $5,999$ 295.80 $4,145$ $6,206$ 295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.15 $4,424$ $7,704$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$					-,	,
295.55 $3,951$ $5,193$ 295.60 $3,990$ $5,392$ 295.65 $4,029$ $5,592$ 295.70 $4,067$ $5,795$ 295.75 $4,106$ $5,999$ 295.80 $4,145$ $6,206$ 295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.15 $4,424$ $7,704$ 296.25 $4,507$ $8,151$ 296.25 $4,507$ $8,151$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
295.60 $3,990$ $5,392$ 295.65 $4,029$ $5,592$ 295.70 $4,067$ $5,795$ 295.75 $4,106$ $5,999$ 295.80 $4,145$ $6,206$ 295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
295.65 $4,029$ $5,592$ 295.70 $4,067$ $5,795$ 295.75 $4,106$ $5,999$ 295.80 $4,145$ $6,206$ 295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
295.70 $4,067$ $5,795$ 295.75 $4,106$ $5,999$ 295.80 $4,145$ $6,206$ 295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
295.75 $4,106$ $5,999$ 295.80 $4,145$ $6,206$ 295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
295.80 $4,145$ $6,206$ 295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.20 $4,465$ $7,927$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.20 $4,465$ $7,927$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.20 $4,465$ $7,927$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$,				
296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.20 $4,465$ $7,927$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.20 $4,465$ $7,927$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
296.15 $4,424$ $7,704$ 296.20 $4,465$ $7,927$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
296.20 4,465 7,927 296.25 4,507 8,151 296.30 4,548 8,377 296.35 4,590 8,606 296.40 4,631 8,836 296.45 4,672 9,069 296.50 4,714 9,303						
296.254,5078,151296.304,5488,377296.354,5908,606296.404,6318,836296.454,6729,069296.504,7149,303						
296.304,5488,377296.354,5908,606296.404,6318,836296.454,6729,069296.504,7149,303						
296.354,5908,606296.404,6318,836296.454,6729,069296.504,7149,303						
296.40 4,631 8,836 296.45 4,672 9,069 296.50 4,714 9,303						
296.45 4,672 9,069 296.50 4,714 9,303						
296.50 4,714 9,303						
296.55 4,755 9,540						
	296.55	4,755	9,540			

Stage-Area-Storage for Pond 4P: infiltration basin

Type III 24-hr 100-year Rainfall=9.29" es Printed 4/28/2021

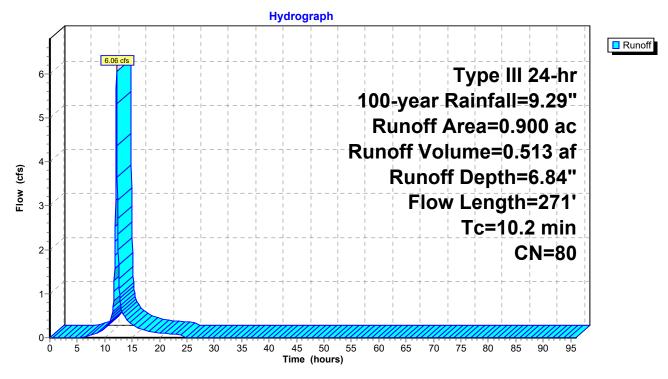
Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Printed 4/28/2021 Page 80

Time span=0.00-96.00 hrs, dt=0.05 hrs, 1921 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment100:	Runoff Area=0.900 ac 21.11% Impervious Runoff Depth=6.84" Flow Length=271' Tc=10.2 min CN=80 Runoff=6.06 cfs 0.513 af
Subcatchment200:	Runoff Area=1.640 ac 1.83% Impervious Runoff Depth=6.34" Flow Length=339' Tc=6.0 min CN=76 Runoff=11.79 cfs 0.867 af
Subcatchment201:	Runoff Area=0.210 ac 38.10% Impervious Runoff Depth=7.71" Tc=6.0 min CN=87 Runoff=1.75 cfs 0.135 af
Subcatchment202:	Runoff Area=0.030 ac 100.00% Impervious Runoff Depth=9.05" Tc=6.0 min CN=98 Runoff=0.27 cfs 0.023 af
Subcatchment203:	Runoff Area=0.030 ac 100.00% Impervious Runoff Depth=9.05" Tc=6.0 min CN=98 Runoff=0.27 cfs 0.023 af
Subcatchment300:	Runoff Area=1.820 ac 0.55% Impervious Runoff Depth=4.83" Flow Length=506' Tc=13.2 min CN=64 Runoff=8.10 cfs 0.733 af
Subcatchment301:	Runoff Area=3.340 ac 32.63% Impervious Runoff Depth=6.59" Tc=6.0 min CN=78 Runoff=24.82 cfs 1.835 af
Reach 2R: section of st	Yeam Avg. Flow Depth=0.27' Max Vel=4.96 fps Inflow=7.37 cfs 0.530 af n=0.040 L=169.0' S=0.1230 '/' Capacity=634.20 cfs Outflow=7.26 cfs 0.530 af
Reach 3R: section of st	ream Avg. Flow Depth=0.65' Max Vel=5.93 fps Inflow=40.00 cfs 3.511 af n=0.040 L=403.0' S=0.0546 '/' Capacity=621.58 cfs Outflow=39.68 cfs 3.511 af
Reach DP-1:	Inflow=39.68 cfs 3.511 af Outflow=39.68 cfs 3.511 af
Pond 1P: Lot 1 cultec	Peak Elev=302.68' Storage=646 cf Inflow=1.75 cfs 0.135 af Discarded=0.04 cfs 0.051 af Primary=1.17 cfs 0.084 af Outflow=1.21 cfs 0.135 af
Pond 1R: twin 48" culve	Peak Elev=300.29' Inflow=6.06 cfs 0.513 af Outflow=6.06 cfs 0.513 af
Pond 2P: Lot 2 cultec	Peak Elev=311.17' Storage=125 cf Inflow=0.27 cfs 0.023 af Discarded=0.03 cfs 0.017 af Primary=0.20 cfs 0.005 af Outflow=0.23 cfs 0.023 af
Pond 3P: Lot 4 cultec	Peak Elev=292.17' Storage=125 cf Inflow=0.27 cfs 0.023 af Discarded=0.03 cfs 0.017 af Primary=0.20 cfs 0.005 af Outflow=0.23 cfs 0.023 af
Pond 4P: infiltration bas Discarded=0.50 cfs 0.533 af F	Sin Peak Elev=297.13' Storage=12,446 cf Inflow=24.82 cfs 1.835 af Primary=14.60 cfs 1.291 af Secondary=1.56 cfs 0.012 af Outflow=16.66 cfs 1.835 af
Total Ru	noff Area = 7.970 ac Runoff Volume = 4.129 af Average Runoff Depth = 6.22

Total Runoff Area = 7.970 ac Runoff Volume = 4.129 af Average Runoff Depth = 6.22" 81.68% Pervious = 6.510 ac 18.32% Impervious = 1.460 ac

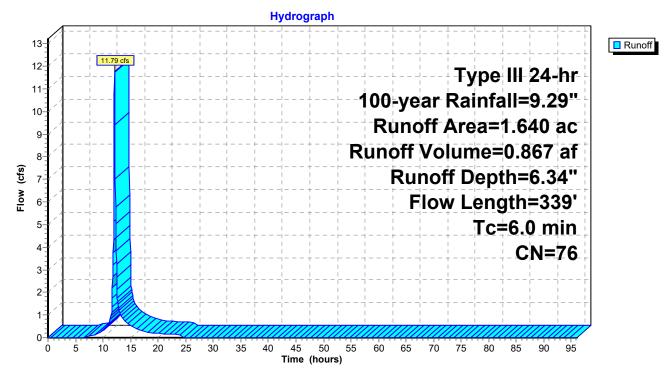

Summary for Subcatchment 100:

Runoff = 6.06 cfs @ 12.14 hrs, Volume= 0.513 af, Depth= 6.84"

Area ((ac) (CN D	escription		
0.1	150	98 P	aved parking	, HSG B	
0.0	020	85 G	ravel roads,	HSG B	
0.0	010	91 G	ravel roads,	HSG D	
0.0	040	98 R	oofs, HSG D		
0.1	130	69 5	0-75% Grass	cover, Fair	, HSG B
0.1	130	80 >	75% Grass c	over, Good	, HSG D
0.1	110	60 V	/oods, Fair, I	ISG B	
0.3	310	<u>79 V</u>	/oods, Fair, I	ISG D	
0.9	900	80 V	leighted Ave	rage	
0.1	710	7	8.89% Pervic	ous Area	
0.	190	2	1.11% Imper	vious Area	
Тс	Length		•		Description
(min)	(feet)	(ft/	ft) (ft/sec)	(cfs)	
9.6	100	0.14	0.17		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.41"
0.5	59	0.06	30 1.83		Shallow Concentrated Flow, B-C
					Short Grass Pasture Kv= 7.0 fps
0.1	112	0.044	40 23.98	301.31	Pipe Channel, C-D
					48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'
					n= 0.013 Corrugated PE, smooth interior
10.2	271	Tota			

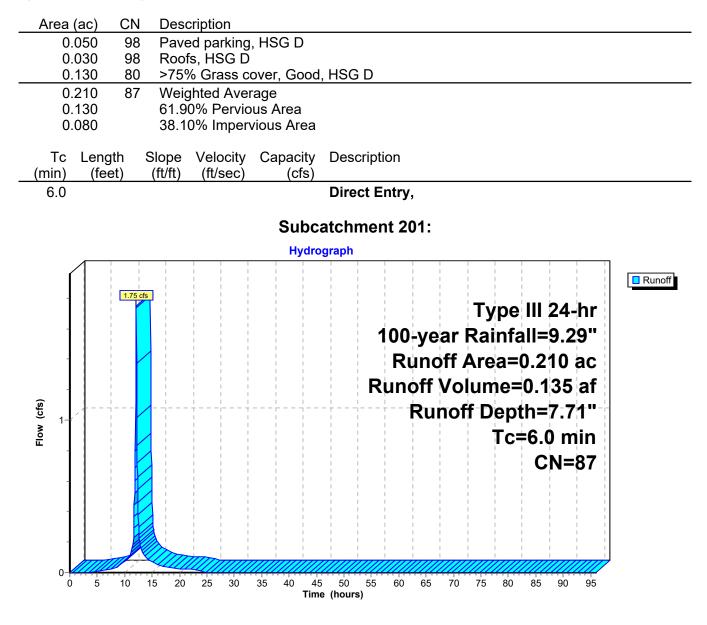
Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Subcatchment 100:

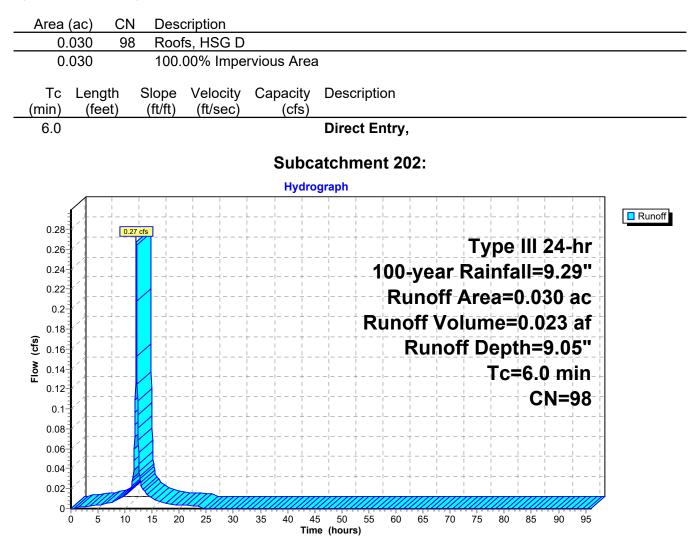

Summary for Subcatchment 200:

Runoff = 11.79 cfs @ 12.09 hrs, Volume= 0.867 af, Depth= 6.34"

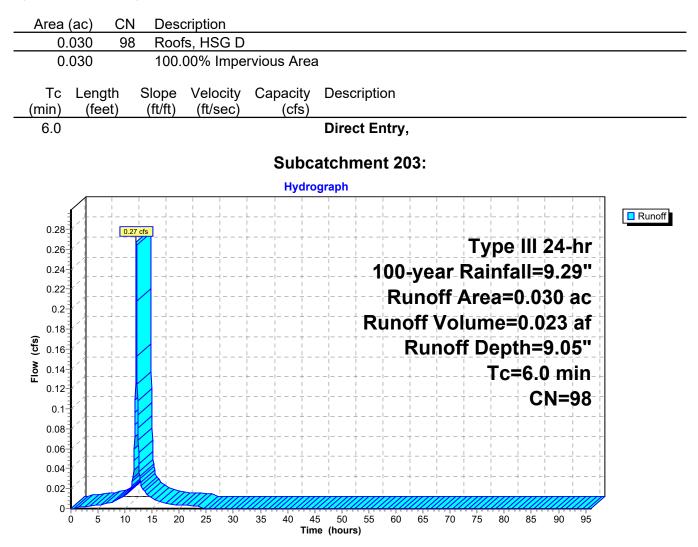
Area	(ac)	CN	Desc	cription		
0	.020	98	Wate	er Surface,	, 0% imp, ⊦	ISG B
0	.010	98	Wate	er Surface,	, 0% imp, ⊦	ISG D
0	.030	98	Root	fs, HSG D		
0	.090	61	>75%	% Grass co	over, Good	, HSG B
0	.720	80	>75%	% Grass co	over, Good	, HSG D
0	.280	60	Woo	ds, Fair, H	ISG B	
0	.490	79	Woo	ds, Fair, H	ISG D	
1	.640	76	Weig	ghted Aver	age	
1	.610		98.1	7% Pervio	us Area	
0	.030		1.83	% Impervi	ous Area	
_		_				
Tc	Lengt		Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.7	100	0.2	2100	0.45		Sheet Flow, A-B
						Grass: Short n= 0.150 P2= 3.41"
0.1	29	9 0.3	3800	4.32		Shallow Concentrated Flow, B-C
						Short Grass Pasture Kv= 7.0 fps
0.7	126	6 0.3	3800	3.08		Shallow Concentrated Flow, C-D
						Woodland Kv= 5.0 fps
1.3	84	4 0.0	0480	1.10		Shallow Concentrated Flow, D-E
						Woodland Kv= 5.0 fps
5.8	339	9 To	otal, li	ncreased t	o minimum	Tc = 6.0 min


Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Subcatchment 200:


Summary for Subcatchment 201:

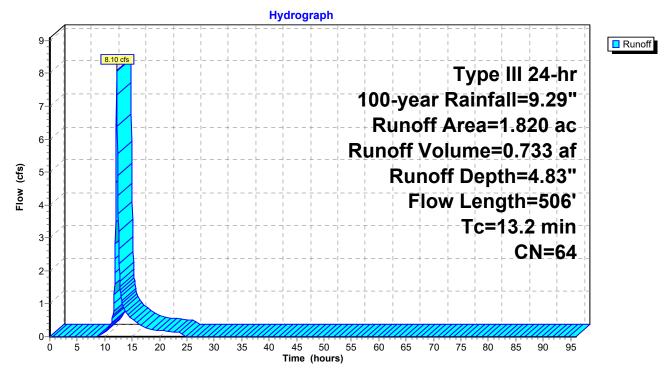
Runoff = 1.75 cfs @ 12.09 hrs, Volume= 0.135 af, Depth= 7.71"


Summary for Subcatchment 202:

Runoff = 0.27 cfs @ 12.09 hrs, Volume= 0.023 af, Depth= 9.05"

Summary for Subcatchment 203:

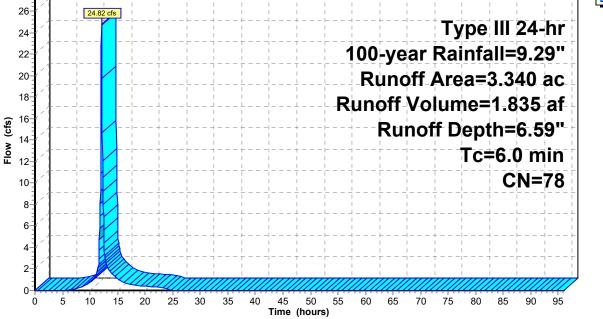
Runoff = 0.27 cfs @ 12.09 hrs, Volume= 0.023 af, Depth= 9.05"


Summary for Subcatchment 300:

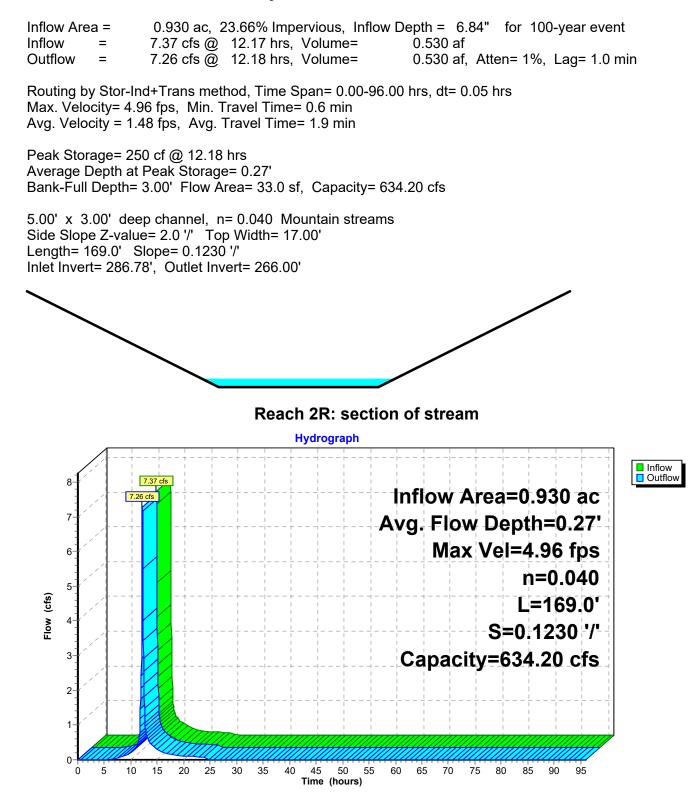
Runoff = 8.10 cfs @ 12.19 hrs, Volume= 0.733 af, Depth= 4.83"

Area	(ac) C	N Des	cription		
1.	110	60 Woo	ods, Fair, ⊦	ISG B	
0.	390	73 Woo	ods, Fair, F	ISG C	
				, 0% imp, H	
				over, Good	
				over, Good	, HSG C
0.	010	98 Pav	ed parking	, HSG B	
			ghted Aver	0	
	810		5% Pervio		
0.	010	0.55	5% Impervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Decemption
10.2	100	0.1200	0.16		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.41"
2.1	245	0.1500	1.94		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
0.9	161	0.3300	2.87		Shallow Concentrated Flow, C-D
					Woodland Kv= 5.0 fps
13.2	506	Total			

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC



Summary for Subcatchment 301:


Runoff = 24.82 cfs @ 12.09 hrs, Volume= 1.835 af, Depth= 6.59"

Area (ac)	CN	Description				
0.470	98	Paved parking, HSG B				
0.100	98	Paved parking, HSG C				
0.360	98	Paved parking, HSG D				
0.080	98	Roofs, HSG B				
0.080	98	Roofs, HSG C				
0.250	60	Woods, Fair, HSG B				
0.150	73	Woods, Fair, HSG C				
0.120	79	Woods, Fair, HSG D				
0.890	61	>75% Grass cover, Good, HSG B				
0.530	74	>75% Grass cover, Good, HSG C				
0.310	80	>75% Grass cover, Good, HSG D				
3.340	78	Weighted Average				
2.250		67.37% Pervious Area				
1.090		32.63% Impervious Area				
Tc Leng	ith S	Slope Velocity Capacity Description				
(min) (fee		(ft/ft) (ft/sec) (cfs)				
6.0	/	Direct Entry,				
0.0		,,,				
Subcatchment 301:						
Hydrograph						
26	24.82 cfs					
24		Type III 24-hr				

2021-04-28 ProposedType III 24-hr100-year Rainfall=9.29"Prepared by Langan Engineering and Environmental ServicesPrinted 4/28/2021HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLCPage 91

Summary for Reach 2R: section of stream

Stage-Storage 3 Storage 2-Depth (feet) 1 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 Ó Storage (cubic-feet)

Reach 2R: section of stream

	Stage-Area-	Storage 10	r Reach 2	R: Section of St
End-Area (sg-ft)	Storage (cubic-feet)			Storage (cubic-feet)
	<u>`</u>			4,482
				4,613
				4,746
				4,880
				5,016
				5,154
				5,293
2.0		289.73		5,434
2.3	392	289.78	33.0	5,577
2.7	449			
3.0	507			
10.9	1,846			
11.5	1,936			
12.0	2,028			
20.7	3,495			
21.4	3,612			
22.1	3,732			
22.8	3,852			
23.5	3,975			
25.8	4,353			
	$\begin{array}{c} (sq-ft) \\ 0.0 \\ 0.3 \\ 0.5 \\ 0.8 \\ 1.1 \\ 1.4 \\ 1.7 \\ 2.0 \\ 2.3 \\ 2.7 \\ 3.0 \\ 3.4 \\ 3.7 \\ 4.1 \\ 4.5 \\ 4.9 \\ 5.3 \\ 5.7 \\ 6.1 \\ 6.6 \\ 7.0 \\ 7.5 \\ 7.9 \\ 8.4 \\ 8.9 \\ 9.4 \\ 9.9 \\ 10.4 \\ 10.9 \\ 1.5 \\ 12.0 \\ 12.6 \\ 13.1 \\ 13.7 \\ 14.3 \\ 14.9 \\ 15.5 \\ 16.1 \\ 16.7 \\ 17.4 \\ 18.0 \\ 15.5 \\ 16.1 \\ 16.7 \\ 17.4 \\ 18.0 \\ 18.7 \\ 19.3 \\ 20.0 \\ 20.7 \\ 21.4 \\ 22.1 \\ 22.8 \end{array}$	End-Area (sq-ft)Storage (cubic-feet)0.000.3430.5880.81341.11831.42321.72842.03372.33922.74493.05073.45673.76294.16924.57574.98245.38925.79636.11,0346.61,1087.01,1837.51,2607.91,3398.41,4198.91,5019.41,5849.91,67010.41,75710.91,84611.51,93612.02,02812.62,12213.12,21713.72,31414.32,41314.92,51415.52,61616.12,72016.72,82617.42,93318.03,04218.73,15319.33,26520.03,37920.73,49521.43,61222.13,73222.83,85223.53,97524.34,09925.04,225	End-Area (sq-ft)Storage (cubic-feet)Elevation (feet) 0.0 0289.38 0.3 43289.43 0.5 88289.48 0.8 134289.53 1.1 183289.58 1.4 232289.63 1.7 284289.68 2.0 337289.73 2.3 392289.78 2.7 44930 3.0 507 3.4 567 3.7 629 4.1 692 4.5 757 4.9 824 5.3 892 5.7 963 6.1 $1,034$ 6.6 $1,108$ 7.0 $1,183$ 7.5 $1,260$ 7.9 $1,339$ 8.4 $1,419$ 8.9 $1,501$ 9.4 $1,584$ 9.9 $1,670$ 10.4 $1,757$ 10.9 $1,846$ 11.5 $1,936$ 12.0 $2,028$ 12.6 $2,122$ 13.1 $2,217$ 13.7 $2,314$ 14.3 $2,413$ 14.9 $2,514$ 15.5 $2,616$ 16.7 $2,826$ 17.4 $2,933$ 18.0 $3,042$ 18.7 $3,153$ 19.3 $3,265$ 20.0 $3,379$ 20.7 $3,495$ 21.4 $3,612$ 22.8 $3,852$ 23.5 $3,975$ 24.3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

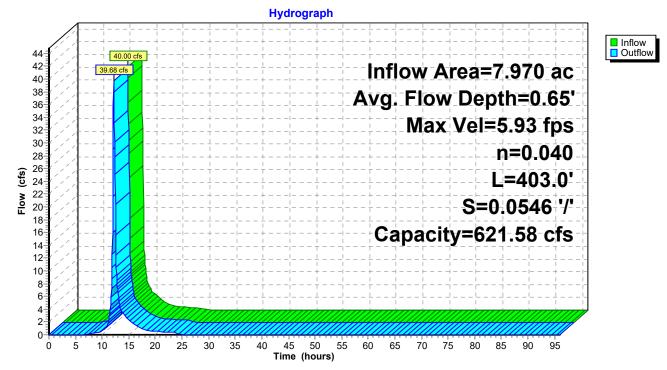
Stage-Area-Storage for Reach 2R: section of stream

2021-04-28 ProposedType III 24-hr100-year Rainfall=9.29"Prepared by Langan Engineering and Environmental ServicesPrinted 4/28/2021HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLCPage 94

Summary for Reach 3R: section of stream

 Inflow Area =
 7.970 ac, 18.32% Impervious, Inflow Depth =
 5.29" for 100-year event

 Inflow =
 40.00 cfs @
 12.14 hrs, Volume=
 3.511 af


 Outflow =
 39.68 cfs @
 12.17 hrs, Volume=
 3.511 af, Atten= 1%, Lag= 1.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Max. Velocity= 5.93 fps, Min. Travel Time= 1.1 min Avg. Velocity = 1.54 fps, Avg. Travel Time= 4.4 min

Peak Storage= 2,716 cf @ 12.16 hrs Average Depth at Peak Storage= 0.65' Bank-Full Depth= 3.00' Flow Area= 45.0 sf, Capacity= 621.58 cfs

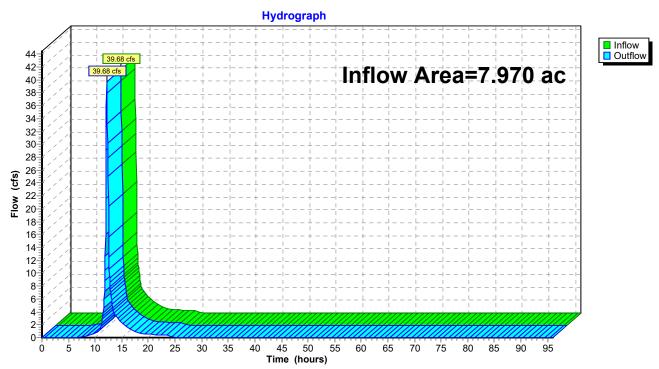
9.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 21.00' Length= 403.0' Slope= 0.0546 '/' Inlet Invert= 266.00', Outlet Invert= 244.00'

Stage-Storage 3 Storage 2-Depth (feet) 1 0-2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 ò Storage (cubic-feet)

Reach 3R: section of stream

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

F 1		01	— 1		01
	End-Area	Storage		End-Area	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
266.00	0.0	0 184	268.60	36.9	14,879
266.05	0.5		268.65	37.9	15,272
266.10	0.9	371	268.70	38.9	15,669
266.15	1.4	562	268.75	39.9	16,070
266.20	1.9	758	268.80	40.9	16,475
266.25 266.30	2.4 2.9	957	268.85	41.9 42.9	16,884
266.30	2.9 3.4	1,161 1,368	268.90 268.95	42.9 44.0	17,297 17,714
266.40	3.4	1,580	269.00	44 .0 45.0	18,135
266.45	3.9 4.5	1,580	209.00	45.0	10,155
266.50	4.5 5.0	2,015			
266.55	5.6	2,015			
266.60	6.1	2,209			
266.65	6.7	2,698			
266.70	7.3	2,000			
266.75	7.9	3,174			
266.80	8.5	3,418			
266.85	9.1	3,665			
266.90	9.7	3,917			
266.95	10.4	4,173			
267.00	11.0	4,433			
267.05	11.7	4,697			
267.10	12.3	4,965			
267.15	13.0	5,237			
267.20	13.7	5,513			
267.25	14.4	5,793			
267.30	15.1	6,077			
267.35	15.8	6,365			
267.40	16.5	6,658			
267.45	17.3	6,954			
267.50	18.0	7,254			
267.55	18.8	7,558			
267.60	19.5	7,867			
267.65	20.3	8,179			
267.70	21.1	8,495			
267.75	21.9	8,816			
267.80 267.85	22.7 23.5	9,140 9,469			
267.85	23.5	9,409 9,801			
267.95	24.3	10,137			
268.00	26.0	10,478			
268.05	26.9	10,823			
268.10	27.7	11,171			
268.15	28.6	11,524			
268.20	29.5	11,881			
268.25	30.4	12,241			
268.30	31.3	12,606			
268.35	32.2	12,975			
268.40	33.1	13,347			
268.45	34.1	13,724			
268.50	35.0	14,105			
268.55	36.0	14,490			


Stage-Area-Storage for Reach 3R: section of stream

2021-04-28 Proposed	Type III 24-hr	100-year Rainfall=9.29"
Prepared by Langan Engineering and Environmental Servic	es	Printed 4/28/2021
HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solution	ons LLC	Page 97

Summary for Reach DP-1:

Inflow Area	a =	7.970 ac, 18.32% Impervious, Inflow Depth = 5.29" for 100-year event	
Inflow	=	39.68 cfs @ 12.17 hrs, Volume= 3.511 af	
Outflow	=	39.68 cfs @ 12.17 hrs, Volume= 3.511 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Reach DP-1:

Summary for Pond 1P: Lot 1 cultec

Inflow Area =	0.210 ac, 38.10% Impervious, Inflow De	epth = 7.71" for 100-year event
Inflow =	1.75 cfs @ 12.09 hrs, Volume=	0.135 af
Outflow =	1.21 cfs @ 12.17 hrs, Volume=	0.135 af, Atten= 31%, Lag= 5.2 min
Discarded =	0.04 cfs @ 8.80 hrs, Volume=	0.051 af
Primary =	1.17 cfs $\overline{@}$ 12.17 hrs, Volume=	0.084 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 302.68' @ 12.17 hrs Surf.Area= 429 sf Storage= 646 cf

Plug-Flow detention time= 13.8 min calculated for 0.135 af (100% of inflow) Center-of-Mass det. time= 13.8 min (794.1 - 780.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	300.40'	153 cf	6.33'W x 24.50'L x 3.54'H Field A
			550 cf Overall - 168 cf Embedded = 382 cf x 40.0% Voids
#2A	300.90'	168 cf	Cultec R-330XLHD x 3 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 1 rows
#3B	300.40'	253 cf	11.17'W x 24.50'L x 3.54'H Field B
			969 cf Overall - 335 cf Embedded = 634 cf x 40.0% Voids
#4B	300.90'	335 cf	Cultec R-330XLHD x 6 Inside #3
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 2 rows
		909 cf	Total Available Storage

909 cf I otal Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	300.90'	6.0" Round Culvert
	-		L= 26.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 300.90' / 300.00' S= 0.0346 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
#2	Discarded	300.40'	4.100 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.04 cfs @ 8.80 hrs HW=300.44' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=1.16 cfs @ 12.17 hrs HW=302.64' (Free Discharge) **1=Culvert** (Inlet Controls 1.16 cfs @ 5.89 fps)

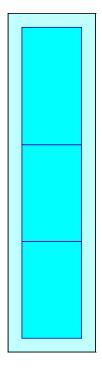
Pond 1P: Lot 1 cultec - Chamber Wizard Field A

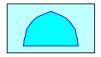
Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 1 rows

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length

1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width


6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height


3 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 1 Rows = 167.6 cf Chamber Storage

549.5 cf Field - 167.6 cf Chambers = 381.9 cf Stone x 40.0% Voids = 152.8 cf Stone Storage

Chamber Storage + Stone Storage = 320.4 cf = 0.007 af Overall Storage Efficiency = 58.3% Overall System Size = 24.50' x 6.33' x 3.54'

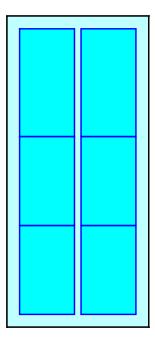
3 Chambers 20.4 cy Field 14.1 cy Stone

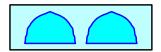
Pond 1P: Lot 1 cultec - Chamber Wizard Field B

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 2 rows

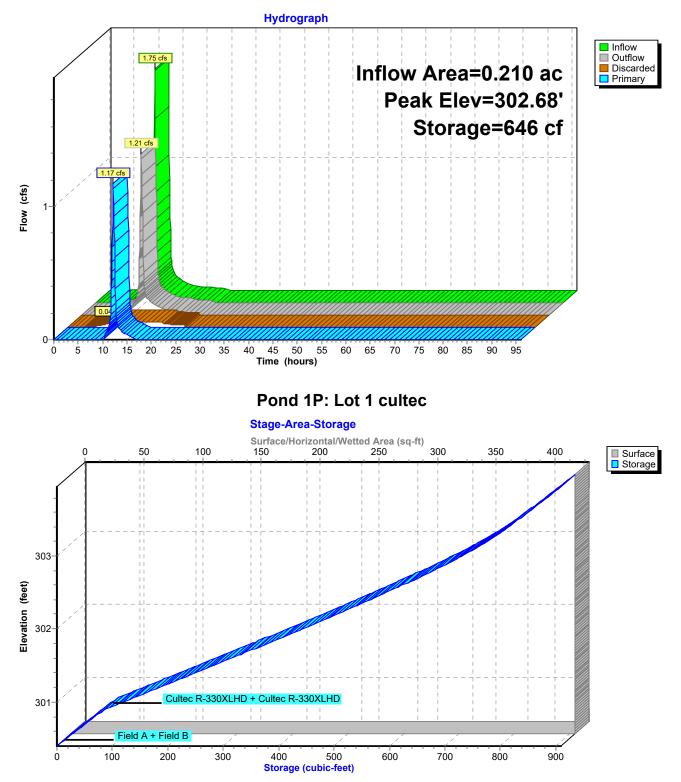
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing


3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length 2 Rows x 52.0" Wide + 6.0" Spacing x 1 + 12.0" Side Stone x 2 = 11.17' Base Width 6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height


6 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 2 Rows = 335.3 cf Chamber Storage

968.9 cf Field - 335.3 cf Chambers = 633.6 cf Stone x 40.0% Voids = 253.5 cf Stone Storage

Chamber Storage + Stone Storage = 588.8 cf = 0.014 afOverall Storage Efficiency = 60.8%Overall System Size = $24.50' \times 11.17' \times 3.54'$


6 Chambers 35.9 cy Field 23.5 cy Stone

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Pond 1P: Lot 1 cultec

Prepared by Langan Engine	eering and Environmental Services
HydroCAD® 10.00-18 s/n 1101	1 © 2016 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
300.40	429	0	303.00	429	732
300.45	429	9	303.05	429	744
300.50	429	17	303.10	429	756
300.55	429	26	303.15	429	767
300.60	429	34	303.20	429	778
300.65	429	43	303.25	429	788
300.70	429	51	303.30	429	798
300.75	429	60	303.35	429	807
300.80	429	69	303.40	429	816
300.85	429	77	303.45	429	825
300.90	429	86	303.50	429	833
300.95	429	102	303.55	429	842
301.00	429	119	303.60	429	851
301.05	429	136	303.65	429	859
301.10	429	152	303.70	429	868
301.15	429	168	303.75	429	876
301.20	429	185	303.80	429	885
301.25	429	201	303.85	429	893
301.30	429	218	303.90	429	902
301.35	429	234			
301.40	429	251			
301.45	429	267			
301.50	429	283			
301.55	429	299			
301.60	429	316			
301.65	429	332			
301.70	429	347			
301.75	429	363			
301.80	429	379			
301.85	429	395			
301.90	429	411			
301.95	429	427			
302.00	429	443			
302.05	429	459			
302.10	429	474			
302.15	429	490			
302.20	429	505			
302.25	429	521			
302.30	429	536			
302.35	429	551			
302.40	429	566			
302.45	429	581			
302.50	429	595			
302.55	429	610			
302.60	429	624			
302.65	429	638			
302.70	429	652			
302.75	429	666			
302.80	429	680			
302.85	429	693			
302.90	429	706			
302.95	429	719			

Stage-Area-Storage for Pond 1P: Lot 1 cultec

2021-04-28 ProposedType III 24-hr100-year Rainfall=9.29"Prepared by Langan Engineering and Environmental ServicesPrinted 4/28/2021HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLCPage 103

Summary for Pond 1R: twin 48" culverts

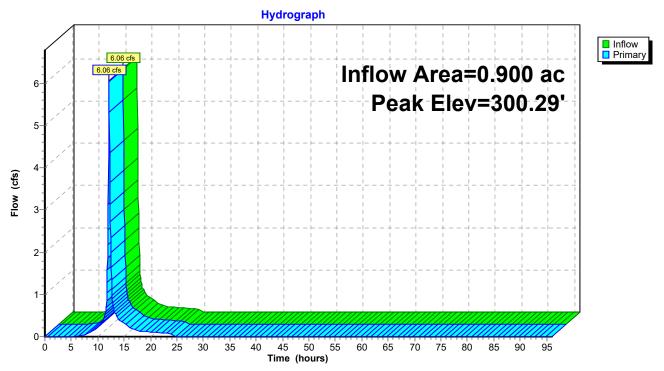
 Inflow Area =
 0.900 ac, 21.11% Impervious, Inflow Depth = 6.84" for 100-year event

 Inflow =
 6.06 cfs @ 12.14 hrs, Volume=
 0.513 af

 Outflow =
 6.06 cfs @ 12.14 hrs, Volume=
 0.513 af, Atten= 0%, Lag= 0.0 min

 Primary =
 6.06 cfs @ 12.14 hrs, Volume=
 0.513 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 300.29' @ 12.14 hrs Flood Elev= 316.05'


Device	Routing	Invert	Outlet Devices
#1	Primary	299.55'	48.0" Round Culvert
			L= 182.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 299.55' / 286.78' S= 0.0702 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 12.57 sf
#2	Primary	299.90'	48.0" Round Culvert
	-		L= 180.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 299.90' / 287.92' S= 0.0666 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 12.57 sf

Primary OutFlow Max=5.88 cfs @ 12.14 hrs HW=300.28' (Free Discharge) **1=Culvert** (Inlet Controls 4.59 cfs @ 2.91 fps)

1=Culvert (Inlet Controls 4.59 cls @ 2.91 lps)

2=Culvert (Inlet Controls 1.29 cfs @ 2.11 fps)

Pond 1R: twin 48" culverts

Stage-Area-Storage Flood Elevation 316 Storage 315 314 313-312 311 310 310-309-308-307-306-306-305 304 303 302 301 300 Ó

Pond 1R: twin 48" culverts

Storage (cubic-feet)

Stage-Area-Storage for Pond 1R: twin 48" culverts

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
299.55	0	309.95	0
299.75	0	310.15	0
299.95	0	310.35	0
300.15	0	310.55	0
300.35	0	310.75	0
300.55	Ō	310.95	0
300.75	0	311.15	0
300.95	Ő	311.35	0 0
301.15	Ő	311.55	0 0
301.35	0 0	311.75	0
301.55	Ő	311.95	Ő
301.75	Ő	312.15	0
301.95	Ő	312.35	Ő
302.15	ů 0	312.55	ů 0
302.35	Ŭ Ŭ	312.75	Ő
302.55	0 0	312.95	Ŭ Ŭ
302.75	0	313.15	0
302.95	0	313.35	0
303.15	0	313.55	0
303.35	0	313.75	0
303.55	0	313.95	0
303.75	0	314.15	0
303.95	0	314.35	0
304.15	0	314.55	0
304.35	0	314.75	0
304.55	0	314.95	0
304.55	0	315.15	0
304.95	0	315.35	0
305.15	0	315.55	0
305.35	0	315.75	0
305.55	0	315.95	0
		315.95	0
305.75	0 0		
305.95 306.15	0		
306.35	0		
306.55			
306.75	0		
306.95	0 0		
	•		
307.15	0 0		
307.35			
307.55 307.75	0		
307.95	0		
	0		
308.15	0		
308.35	0		
308.55	0		
308.75	0		
308.95	0		
309.15	0		
309.35	0		
309.55	0		
309.75	0		
		I	

Summary for Pond 2P: Lot 2 cultec

Inflow Area =	0.030 ac,100.00% Impervious, Inflow De	pth = 9.05" for 100-year event
Inflow =	0.27 cfs @ 12.09 hrs, Volume=	0.023 af
Outflow =	0.23 cfs @ 12.14 hrs, Volume= (0.023 af, Atten= 15%, Lag= 3.5 min
Discarded =	0.03 cfs @ 11.50 hrs, Volume= (0.017 af
Primary =	0.20 cfs @ 12.14 hrs, Volume= 0	0.005 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 311.17' @ 12.14 hrs Surf.Area= 310 sf Storage= 125 cf

Plug-Flow detention time= 10.9 min calculated for 0.023 af (100% of inflow) Center-of-Mass det. time= 10.9 min (750.3 - 739.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	310.40'	153 cf	6.33'W x 24.50'L x 3.54'H Field A
			550 cf Overall - 168 cf Embedded = 382 cf x 40.0% Voids
#2A	310.90'	168 cf	Cultec R-330XLHD x 3 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 1 rows
#3B	310.40'	153 cf	6.33'W x 24.50'L x 3.54'H Field B
			550 cf Overall - 168 cf Embedded = 382 cf x 40.0% Voids
#4B	310.90'	168 cf	Cultec R-330XLHD x 3 Inside #3
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 1 rows
		641 cf	Total Available Storage

641 CT Total Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	310.90'	6.0" Round Culvert
	•		L= 21.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 310.90' / 310.00' S= 0.0429 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
#2	Discarded	310.40'	4.100 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.03 cfs @ 11.50 hrs HW=310.44' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.19 cfs @ 12.14 hrs HW=311.17' (Free Discharge) **1=Culvert** (Inlet Controls 0.19 cfs @ 1.78 fps)

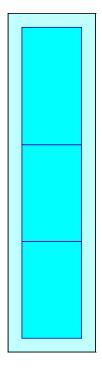
Pond 2P: Lot 2 cultec - Chamber Wizard Field A

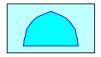
Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 1 rows

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length

1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width


6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height


3 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 1 Rows = 167.6 cf Chamber Storage

549.5 cf Field - 167.6 cf Chambers = 381.9 cf Stone x 40.0% Voids = 152.8 cf Stone Storage

Chamber Storage + Stone Storage = 320.4 cf = 0.007 af Overall Storage Efficiency = 58.3% Overall System Size = 24.50' x 6.33' x 3.54'

3 Chambers 20.4 cy Field 14.1 cy Stone

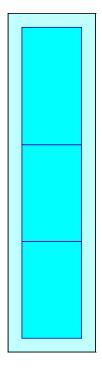
Pond 2P: Lot 2 cultec - Chamber Wizard Field B

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 1 rows

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length

1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width

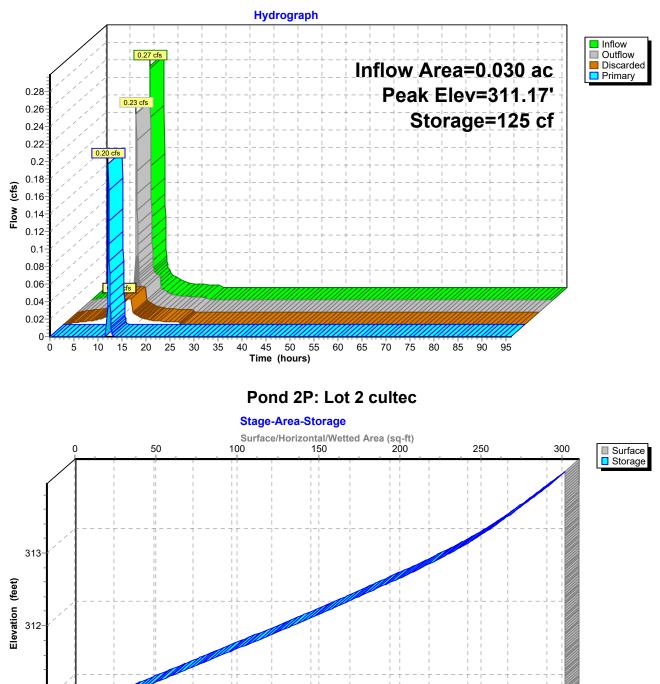

6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height

3 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 1 Rows = 167.6 cf Chamber Storage

549.5 cf Field - 167.6 cf Chambers = 381.9 cf Stone x 40.0% Voids = 152.8 cf Stone Storage

Chamber Storage + Stone Storage = 320.4 cf = 0.007 af Overall Storage Efficiency = 58.3% Overall System Size = 24.50' x 6.33' x 3.54'

3 Chambers 20.4 cy Field 14.1 cy Stone



311

0

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Pond 2P: Lot 2 cultec

Cultec R-330XLHD + Cultec R-330XLHD

250

300

Storage (cubic-feet)

350

400

450

500

550

600

Field A + Field B

150

200

100

50

_

Prepared by Langan Engineering and Environmental Services	
HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions L	LC

		0	0		
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
310.40	310	0	313.00	310	513
310.45	310	6	313.05	310	522
310.50	310	12	313.10	310	530
310.55	310	19	313.15	310	538
310.60	310	25	313.20	310	546
310.65	310	31	313.25	310	553
310.70	310	37	313.30	310	560
310.75	310	43	313.35	310	567
310.80	310	50	313.40	310	574
310.85	310	56	313.45	310	580
310.90	310	62	313.50	310	586
310.95	310	74	313.55	310	592
311.00	310	85	313.60	310	598
311.05	310	97	313.65	310	605
311.10	310	108	313.70	310	611
311.15	310	120	313.75	310	617
311.20	310	131	313.80	310	623
311.25	310	143	313.85	310	629
311.30	310	154	313.90	310	636
311.35	310	165			
311.40	310	177			
311.45	310	188			
311.50	310	200			
311.55	310	211			
311.60	310	222			
311.65	310	233			
311.70	310	244			
311.75	310	256			
311.80	310	267			
311.85	310	278			
311.90	310	289			
311.95	310	300			
312.00	310	311			
312.05	310	322			
312.10 312.15	310 310	333 344			
312.15	310	355			
	310				
312.25 312.30	310	365 376			
312.35	310	386			
312.40	310	397			
312.40	310	407			
312.50	310	418			
312.55	310	428			
312.60	310	438			
312.65	310	448			
312.70	310	457			
312.75	310	467			
312.80	310	477			
312.85	310	486			
312.90	310	495			
312.95	310	504			

Stage-Area-Storage for Pond 2P: Lot 2 cultec

Summary for Pond 3P: Lot 4 cultec

Inflow Area =	0.030 ac,100.00% Impervious, Inflow De	epth = 9.05" for 100-year event
Inflow =	0.27 cfs @ 12.09 hrs, Volume=	0.023 af
Outflow =	0.23 cfs @ 12.14 hrs, Volume=	0.023 af, Atten= 15%, Lag= 3.5 min
Discarded =	0.03 cfs @ 11.50 hrs, Volume=	0.017 af
Primary =	0.20 cfs @ 12.14 hrs, Volume=	0.005 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 292.17' @ 12.14 hrs Surf.Area= 310 sf Storage= 125 cf

Plug-Flow detention time= 10.9 min calculated for 0.023 af (100% of inflow) Center-of-Mass det. time= 10.9 min (750.3 - 739.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	291.40'	153 cf	6.33'W x 24.50'L x 3.54'H Field A
			550 cf Overall - 168 cf Embedded = 382 cf x 40.0% Voids
#2A	291.90'	168 cf	Cultec R-330XLHD x 3 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 1 rows
#3B	291.40'	153 cf	6.33'W x 24.50'L x 3.54'H Field B
			550 cf Overall - 168 cf Embedded = 382 cf x 40.0% Voids
#4B	291.90'	168 cf	Cultec R-330XLHD x 3 Inside #3
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 1 rows
		641 cf	Total Available Storage

641 CT Total Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	291.90'	6.0" Round Culvert
	•		L= 20.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 291.90' / 291.00' S= 0.0450 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf
#2	Discarded	291.40'	4.100 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.03 cfs @ 11.50 hrs HW=291.44' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.19 cfs @ 12.14 hrs HW=292.17' (Free Discharge) **1=Culvert** (Inlet Controls 0.19 cfs @ 1.78 fps)

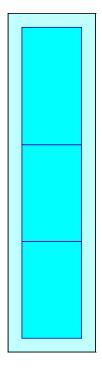
Pond 3P: Lot 4 cultec - Chamber Wizard Field A

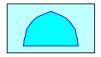
Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 1 rows

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length

1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width


6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height


3 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 1 Rows = 167.6 cf Chamber Storage

549.5 cf Field - 167.6 cf Chambers = 381.9 cf Stone x 40.0% Voids = 152.8 cf Stone Storage

Chamber Storage + Stone Storage = 320.4 cf = 0.007 af Overall Storage Efficiency = 58.3% Overall System Size = 24.50' x 6.33' x 3.54'

3 Chambers 20.4 cy Field 14.1 cy Stone

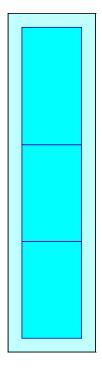
Pond 3P: Lot 4 cultec - Chamber Wizard Field B

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00'L = 52.2 cf Overall Size= 52.0"W x 30.5"H x 8.50'L with 1.50' Overlap Row Length Adjustment= +1.50' x 7.45 sf x 1 rows

3 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 22.50' Row Length +12.0" End Stone x 2 = 24.50' Base Length

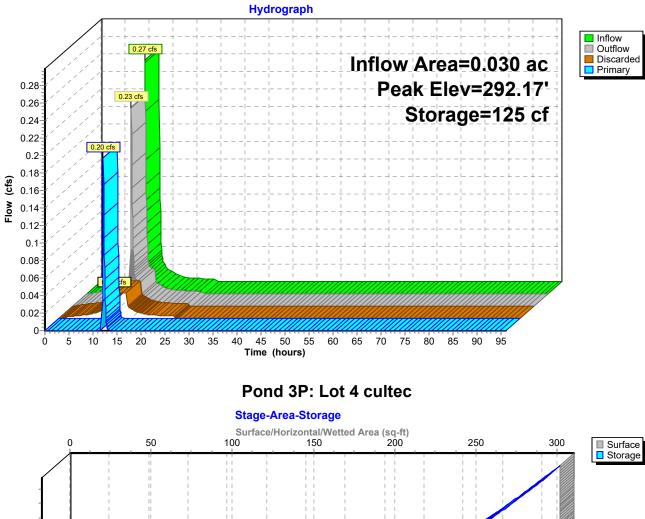
1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width

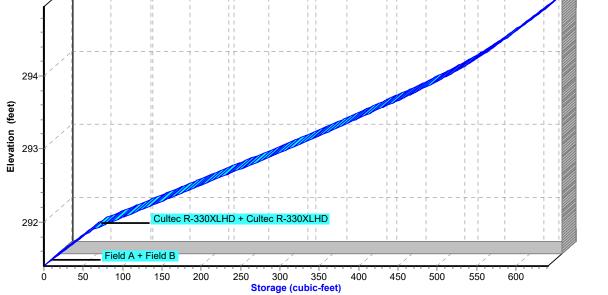

6.0" Base + 30.5" Chamber Height + 6.0" Cover = 3.54' Field Height

3 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 1 Rows = 167.6 cf Chamber Storage

549.5 cf Field - 167.6 cf Chambers = 381.9 cf Stone x 40.0% Voids = 152.8 cf Stone Storage

Chamber Storage + Stone Storage = 320.4 cf = 0.007 af Overall Storage Efficiency = 58.3% Overall System Size = 24.50' x 6.33' x 3.54'


3 Chambers 20.4 cy Field 14.1 cy Stone



Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Prepared by Langan Engine	ering and Environmental Services
HydroCAD® 10.00-18 s/n 11011	© 2016 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
291.40	310	0	294.00	310	513
291.45	310	6	294.05	310	522
291.50	310	12	294.10	310	530
291.55	310	19	294.15	310	538
291.60	310	25	294.20	310	546
291.65	310	31	294.25	310	553
291.70	310	37	294.30	310	560
291.75	310	43	294.35	310	567
291.80	310	50	294.40	310	574
291.85	310	56	294.45	310	580
291.90	310	62	294.50	310	586
291.95	310	74	294.55	310	592
292.00	310	85	294.60	310	598
292.00	310	97	294.65	310	605
292.03	310	108	294.05	310	611
292.10	310	120	294.75	310	617
292.15	310	131	294.75	310	623
292.20	310	143	294.80	310	629
292.25	310	143		310	636
	310	165	294.90	310	030
292.35					
292.40	310	177			
292.45	310	188			
292.50	310	200			
292.55	310 310	211 222			
292.60 292.65	310	222			
292.65	310	233 244			
	310				
292.75	310	256			
292.80		267			
292.85	310 310	278 289			
292.90					
292.95	310	300			
293.00	310 310	311 322			
293.05					
293.10	310 310	333 344			
293.15 293.20	310				
	310	355 365			
293.25					
293.30	310	376			
293.35	310	386			
293.40	310	397			
293.45	310 310	407 418			
293.50					
293.55	310	428			
293.60	310	438			
293.65	310	448			
293.70	310	457			
293.75	310	467			
293.80	310	477			
293.85	310	486			
293.90	310	495			
293.95	310	504			
			l		

Stage-Area-Storage for Pond 3P: Lot 4 cultec

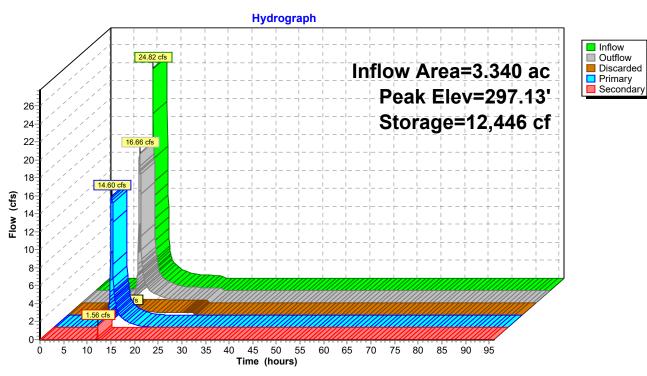
Summary for Pond 4P: infiltration basin

Inflow Area =	3.340 ac, 32.63% Impervious, Inflow Depth = 6.59" for 100-year	event
Inflow =	24.82 cfs @ 12.09 hrs, Volume= 1.835 af	
Outflow =	16.66 cfs @ 12.19 hrs, Volume= 1.835 af, Atten= 33%, Lag=	= 6.0 min
Discarded =	0.50 cfs @ 12.19 hrs, Volume= 0.533 af	
Primary =	14.60 cfs @ 12.19 hrs, Volume= 1.291 af	
Secondary =	1.56 cfs @ 12.19 hrs, Volume= 0.012 af	

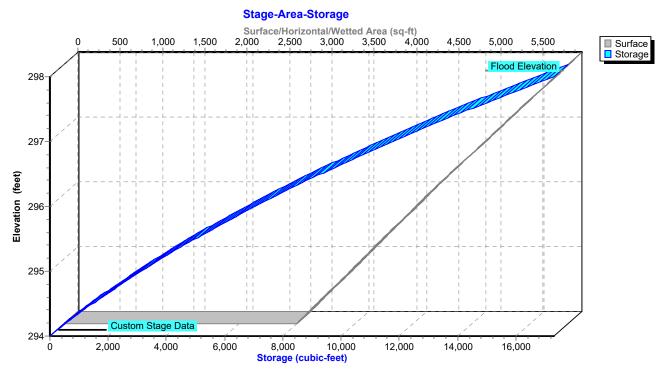
Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 297.13' @ 12.19 hrs Surf.Area= 5,236 sf Storage= 12,446 cf Flood Elev= 298.00' Surf.Area= 5,955 sf Storage= 17,305 cf

Plug-Flow detention time= 45.1 min calculated for 1.834 af (100% of inflow) Center-of-Mass det. time= 45.2 min (847.0 - 801.8)

Volume	Invert	Avail.Stor	rage Storage D	escription				
#1	294.00'	17,30	05 cf Custom S	Stage Data (Pr	ismatic)Listed below (Recalc)			
Flovetic		of Area	Ina Stara	Cum Store				
Elevatio		rf.Area	Inc.Store	Cum.Store				
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)				
294.0	00	2,750	0	0				
296.0	00	4,300	7,050	7,050				
298.0)0	5,955	10,255	17,305				
			,	,				
Device	Routing	Invert	Outlet Devices					
#1	Primary	290.40'	15.0" Round C	Culvert				
	2		L= 16.0' CPP,	square edge h	eadwall, Ke= 0.500			
					288.00' S= 0.1500 '/' Cc= 0.900			
			n= 0.013 Corru	idated PE, smo	both interior, Flow Area= 1.23 sf			
#2	Device 1	295.00'	24.0" W x 6.0"					
#3	Device 1	296.00'						
110	Defilee 1	200.00	Limited to weir					
#4	Secondary	297.00'						
#4	occontrary	237.00	•	162.0 deg x 10.0' long x 1.00' rise Emergency spillway Cv= 2.47 (C= 3.09)				
45	Discorded	204 001						
#5	Discarded	294.00'	4.100 in/hr Exf	intration over	Surface area			
Discord	ad OutFlaw	Max-0 50 af	a @ 10 10 hra U					


Discarded OutFlow Max=0.50 cfs @ 12.19 hrs HW=297.12' (Free Discharge) **5=Exfiltration** (Exfiltration Controls 0.50 cfs)

Primary OutFlow Max=14.59 cfs @ 12.19 hrs HW=297.12' (Free Discharge) -1=Culvert (Inlet Controls 14.59 cfs @ 11.89 fps) **2=Slot** (Passes < 6.58 cfs potential flow) **3=Grate** (Passes < 50.44 cfs potential flow)


Secondary OutFlow Max=1.39 cfs @ 12.19 hrs HW=297.12' (Free Discharge) 4=Emergency spillway (Weir Controls 1.39 cfs @ 1.06 fps)

Prepared by Langan Engineering and Environmental Services HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC

Pond 4P: infiltration basin

Pond 4P: infiltration basin

Prepared by Langan Engineering and Environmental Services	
HydroCAD® 10.00-18 s/n 11011 © 2016 HydroCAD Software Solutions LLC	;

Elevation Surface Storage (feet) (sq.ft) (cubic-feet) 294.05 2.789 138 296.65 4.838 10.020 294.10 2.828 279 296.70 4.879 10.263 294.10 2.828 279 296.70 4.879 10.263 294.25 2.944 712 296.80 4.962 10.755 294.35 3.021 1.010 296.95 5.003 11.004 294.45 3.099 1.316 297.05 5.169 12.021 294.45 3.099 1.316 297.05 5.169 12.021 294.55 3.176 1.630 297.15 5.222 12.542 294.65 3.254 1.951 297.20 5.233 13.071 2.448 294.40 3.370 2.448 2.97.30 5.376 13.339 294.75 3.331 2.280 297.55 5.683 14.709 294.60 3.370 2.448<						
	Elevation	Surface	Storage	Elevation	Surface	Storage
224.052.789138296.654.83810.020294.102.628279296.704.87910.263294.152.866421296.754.92110.508294.202.905565296.804.96210.755294.252.944712296.855.00611.255294.302.983860296.905.04511.756294.443.0601.162297.005.12811.764294.403.0601.162297.005.12811.764294.453.0991.316297.055.16912.021294.553.1761.630297.155.25212.542294.663.2151.700297.205.29312.806294.653.2541.951297.255.33413.071294.703.2922.115297.305.37613.339294.753.3312.280297.505.54114.431294.803.3702.448297.405.4583.881294.803.3702.448297.505.54114.431294.903.4472.789297.505.54114.431294.903.6413.675297.755.74815.842295.053.6413.675297.755.74815.842295.053.6413.675297.755.74815.842295.053.9515.302295.553.9515.302295.654.029 <t< td=""><td>(feet)</td><td>(sq-ft)</td><td>(cubic-feet)</td><td>(feet)</td><td>(sq-ft)</td><td>(cubic-feet)</td></t<>	(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
224.052.789138296.654.83810.020294.102.628279296.704.87910.263294.152.866421296.754.92110.508294.202.905565296.804.96210.755294.252.944712296.855.00611.255294.302.983860296.905.04511.756294.443.0601.162297.005.12811.764294.403.0601.162297.005.12811.764294.453.0991.316297.055.16912.021294.553.1761.630297.155.25212.542294.663.2151.700297.205.29312.806294.653.2541.951297.255.33413.071294.703.2922.115297.305.37613.339294.753.3312.280297.505.54114.431294.803.3702.448297.405.4583.881294.803.3702.448297.505.54114.431294.903.4472.789297.505.54114.431294.903.6413.675297.755.74815.842295.053.6413.675297.755.74815.842295.053.6413.675297.755.74815.842295.053.9515.302295.553.9515.302295.654.029 <t< td=""><td>294.00</td><td></td><td>0</td><td>296.60</td><td></td><td>9.779</td></t<>	294.00		0	296.60		9.779
294.102.828279296.704.87910.263294.152.866421296.754.92110.508294.202.905565296.804.96210.755294.252.944712296.855.00311.004294.302.983860296.905.04511.255294.353.0211.010296.955.08611.508294.403.0601.162297.005.12811.764294.453.0991.316297.105.21012.281294.503.1381.472297.105.21012.281294.663.2151.790297.205.29312.806294.653.2541.951297.255.33413.071294.753.3312.280297.355.41713.639294.853.4092.617297.455.50014.155294.903.4472.789297.605.62414.989295.053.5643.315297.655.68514.709295.003.6253.138297.605.62414.989295.053.5643.315297.655.66515.271295.103.6413.675297.755.74815.842295.203.6803.888297.805.79016.131295.253.9134.997298.005.95517.305295.754.1065.999295.653.9134.997295.553.951 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
294.152.8664.21296.754.92110.508294.202.905565296.804.96210.755294.252.944712296.855.00311.004294.302.983860296.905.04511.255294.353.0211.010296.955.08611.508294.403.0601.162297.005.12811.764294.403.1381.472297.105.21012.281294.553.1761.630297.155.25212.542294.663.2151.790297.205.29312.806294.653.2541.951297.255.33413.071294.703.2922.115297.355.41713.609294.753.3312.280297.355.41713.609294.803.3702.448297.405.45813.881294.853.4092.617297.605.62414.989295.053.5643.315297.605.64114.431294.953.4862.962297.555.58314.709295.053.5643.315297.605.62414.989295.053.6413.675297.755.74815.842295.053.6413.675297.755.74815.842295.053.9515.193297.855.91417.008295.053.9515.193297.855.91417.008295.053.914						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
294 252.944712296.855.00311.004294.302.983860296.905.04511.255294.353.0211.010296.955.08611.508294.403.0601.162297.005.12811.764294.453.0991.316297.055.16912.021294.503.1381.472297.105.21012.281294.603.2151.790297.205.29312.806294.653.2541.951297.255.33413.071294.753.3312.2022.115297.305.37613.399294.753.3312.280297.355.41713.609294.803.3702.448297.455.50014.155294.903.4472.789297.505.54114.431294.953.4662.962297.555.58314.709295.053.5643.315297.655.66214.989295.053.6413.675297.755.74815.842295.053.6613.672297.805.70715.562295.153.6413.675297.755.74815.842295.253.7194.043297.805.79116.714295.303.7584.230297.805.87216.714295.453.8744.802297.905.87216.714295.553.9915.992295.654.1657.927295.					,	
294.302.983860296.905.04511.255294.353.0211.010296.955.08611.508294.403.0601.162297.005.12811.764294.453.0991.316297.055.16912.021294.503.1381.472297.105.21012.281294.553.1761.630297.155.25212.542294.603.2151.790297.205.29312.806294.653.2541.951297.255.33413.071294.703.2922.115297.305.37613.339294.753.3312.280297.355.41713.609294.853.4092.617297.455.50014.155294.903.4472.789297.505.54114.431294.953.4862.962297.555.58314.709295.003.5253.138297.605.62414.989295.053.6433.15297.655.66515.271295.103.6033.494297.705.70715.556295.153.6413.675297.755.74815.842295.203.6803.8584.997297.855.83116.421295.253.7964.413297.855.83116.421295.403.8354.609298.005.95517.305295.553.9515.193295.555.91417.00829						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
294.40 $3,060$ $1,162$ 297.00 $5,128$ $11,764$ 294.45 $3,099$ $1,316$ 297.05 $5,169$ $12,021$ 294.50 $3,138$ 1.472 297.10 $5,210$ $12,281$ 294.55 $3,176$ 1.630 297.15 $5,252$ $12,542$ 294.65 $3,254$ 1.951 297.25 $5,334$ $13,071$ 294.70 $3,292$ $2,115$ 297.30 $5,376$ $13,339$ 294.75 $3,331$ $2,280$ 297.45 $5,417$ $13,609$ 294.80 $3,370$ $2,448$ 297.40 $5,458$ $13,881$ 294.85 $3,409$ $2,617$ 297.50 $5,541$ $14,431$ 294.95 $3,486$ $2,962$ 297.55 $5,583$ $14,709$ 295.05 $3,564$ $3,315$ 297.66 $5,665$ $15,271$ 295.10 $3,603$ $3,494$ 297.70 $5,707$ $15,556$ 295.15 $3,641$ $3,675$ 297.75 $5,748$ $15,842$ 295.20 $3,660$ $3,858$ 297.80 $5,790$ $16,131$ 295.25 $3,719$ $4,043$ 297.85 $5,831$ $16,421$ 295.30 $3,758$ $4,230$ 297.90 $5,872$ $16,714$ 295.55 $3,951$ $5,193$ $17,005$ $5,955$ $17,305$ 295.66 $3,990$ $5,922$ 298.00 $5,955$ $17,305$ 295.55 $3,951$ $5,193$ $4,242$ $7,04$ 295.95 $4,261$ $6,$						
294.45 $3,099$ 1,316297.05 $5,169$ $12,021$ 294.50 $3,138$ $1,472$ 297.10 $5,210$ $12,281$ 294.50 $3,215$ $1,790$ 297.20 $5,233$ $12,806$ 294.65 $3,254$ $1,951$ 297.20 $5,233$ $12,806$ 294.65 $3,254$ $1,951$ 297.30 $5,376$ $13,339$ 294.70 $3,292$ $2,115$ 297.30 $5,376$ $13,339$ 294.75 $3,331$ $2,280$ 297.35 $5,417$ $13,609$ 294.80 $3,370$ $2,448$ 297.40 $5,458$ $13,881$ 294.85 $3,409$ $2,617$ 297.45 $5,500$ $14,155$ 294.90 $3,447$ $2,789$ 297.50 $5,541$ $14,431$ 294.95 $3,686$ $2,962$ 297.55 $5,583$ $14,709$ 295.00 $3,525$ $3,138$ 297.60 $5,624$ $4,989$ 295.05 $3,664$ $3,315$ 297.65 $5,665$ $15,271$ 295.15 $3,641$ $3,675$ 297.75 $5,748$ $15,842$ 295.20 $3,680$ $3,858$ 297.80 $5,790$ $16,131$ 295.25 $3,719$ $4,043$ 297.90 $5,872$ $16,714$ 295.35 $3,766$ $4,419$ 297.90 $5,955$ $17,305$ 295.45 $3,874$ $4,602$ 298.00 $5,955$ $17,305$ 295.55 $3,951$ $5,193$ $5,955$ $17,305$ 295.55 $4,261$ $6,836$						
294.50 3,138 1,472 297.10 5,210 12,281 294.55 3,176 1,630 297.15 5,252 12,542 294.60 3,215 1,790 297.20 5,293 12,806 294.65 3,254 1,951 297.25 5,334 13,071 294.75 3,331 2,280 297.35 5,417 13,609 294.80 3,370 2,448 297.40 5,458 13,881 294.85 3,409 2,617 297.55 5,500 14,155 294.90 3,447 2,789 297.50 5,541 14,431 294.95 3,466 2,962 297.55 5,583 14,709 295.00 3,525 3,138 297.60 5,665 15,271 295.10 3,664 3,315 297.75 5,748 15,842 295.20 3,680 3,858 297.80 5,790 16,131 295.51 3,641 3,675 297.75 5,748 15,842 295.20 3,680 3,858 297.85 5,831	294.40	3,060	1,162	297.00		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	294.45	3,099	1,316	297.05	5,169	12,021
294.55 3,176 1,630 297.15 5,252 12,542 294.60 3,215 1,790 297.20 5,293 12,806 294.65 3,254 1,951 297.25 5,334 13,071 294.70 3,292 2,115 297.35 5,417 13,609 294.80 3,370 2,448 297.40 5,458 13,881 294.85 3,409 2,617 297.45 5,500 14,155 294.90 3,447 2,789 297.55 5,541 14,431 294.95 3,486 2,962 297.55 5,563 14,709 295.00 3,525 3,138 297.60 5,624 14,989 295.10 3,603 3,494 297.70 5,707 15,556 295.15 3,641 3,675 297.75 5,748 15,842 295.20 3,680 3,858 297.80 5,790 16,131 295.25 3,719 4,043 297.85 5,831 16,421 295.30 3,758 4,230 297.90 5,872	294.50	3,138	1,472	297.10	5,210	12,281
294.60 3.215 1.790 297.20 5.293 12.806 294.65 3.254 1.951 297.25 5.334 13.071 294.70 3.292 2.115 297.30 5.376 13.339 294.75 3.331 2.280 297.35 5.417 13.609 294.80 3.370 2.448 297.40 5.458 13.815 294.80 3.477 2.789 297.55 5.500 14.155 294.90 3.447 2.789 297.60 5.624 14.939 295.00 3.525 3.138 297.60 5.624 14.989 295.05 3.564 3.315 297.75 5.707 15.566 295.10 3.603 3.494 297.70 5.707 15.566 295.15 3.641 3.675 297.75 5.748 15.842 295.20 3.680 3.858 297.80 5.790 16.131 295.25 3.719 4.043 297.85 5.831 16.421 295.35 3.951 5.193 295.50 3.941	294.55	3.176		297.15		12,542
294.65 3.254 1.951 297.25 5.334 13.071 294.70 3.292 2.115 297.30 5.376 13.309 294.75 3.331 2.280 297.35 5.417 13.609 294.80 3.370 2.448 297.40 5.458 13.881 294.85 3.409 2.617 297.50 5.541 14.451 294.95 3.486 2.962 297.55 5.583 14.709 295.00 3.525 3.138 297.60 5.624 14.989 295.05 3.564 3.315 297.75 5.707 15.556 295.10 3.603 3.494 297.70 5.707 15.556 295.15 3.641 3.675 297.75 5.748 15.841 295.20 3.680 3.858 297.80 5.831 16.421 295.20 3.680 3.858 297.80 5.914 17.008 295.35 3.796 4.419 297.95 5.914 17.005 295.40 3.835 4.609 298.00 5.95						
294.70 3.292 2.115 297.30 5.376 $13,339$ 294.75 3.331 2.280 297.35 5.417 13.609 294.80 3.370 2.448 297.45 5.500 14.155 294.80 3.447 2.789 297.45 5.500 14.155 294.90 3.447 2.789 297.50 5.541 14.431 294.95 3.486 2.962 297.55 5.683 14.709 295.00 3.525 3.138 297.60 5.624 14.989 295.05 3.664 3.315 297.65 5.665 15.271 295.10 3.603 3.494 297.70 5.707 15.556 295.15 3.641 3.675 297.75 5.748 15.842 295.20 3.680 3.858 297.80 5.790 16.131 295.25 3.719 4.043 297.85 5.831 16.421 295.30 3.758 4.230 297.90 5.872 16.714 295.55 3.851 5.193 295.60 3.990 5.392 295.65 4.261 6.836 295.80 4.145 6.206 298.00 5.955 17.305 295.55 4.261 6.836 4.145 4.802 295.55 4.261 6.836 4.145 4.997 295.80 4.145 6.206 4.145 7.927 296.55 4.507 8.151 4.242 7.704						
294.75 3,331 2,280 297.35 5,417 13,609 294.80 3,370 2,448 297.40 5,458 13,881 294.85 3,409 2,617 297.45 5,500 14,155 294.90 3,447 2,789 297.55 5,583 14,709 295.00 3,525 3,138 297.60 5,624 14,989 295.05 3,664 3,315 297.65 5,665 15,271 295.10 3,603 3,494 297.70 5,707 15,556 295.15 3,641 3,675 297.75 5,748 15,842 295.20 3,680 3,858 297.80 5,831 16,421 295.25 3,719 4,043 297.85 5,831 16,714 295.30 3,758 4,230 297.90 5,872 16,714 295.50 3,951 5,193 298.00 5,955 17,305 295.50 3,913 4,997 298.00 5,955 17,305 295.50 3,913 4,997 5,955 17						
294.80 3,370 2,448 297.40 5,458 13,881 294.85 3,409 2,617 297.45 5,500 14,155 294.90 3,447 2,789 297.50 5,541 14,431 294.95 3,486 2,962 297.55 5,583 14,709 295.00 3,525 3,138 297.60 5,664 14,989 295.05 3,664 3,315 297.65 5,665 15,271 295.10 3,633 3,494 297.70 5,707 15,556 295.15 3,641 3,675 297.75 5,748 15,842 295.20 3,680 3,858 297.80 5,790 16,131 295.25 3,719 4,043 297.95 5,811 16,421 295.30 3,758 4,230 297.90 5,872 16,714 295.45 3,874 4,802 295.55 3,951 5,932 295.66 3,990 5,392 295.50 3,913 4,997 295.55 3,951 5,952 295.75 4,106 5,999						
294.85 $3,409$ $2,617$ 297.45 $5,500$ $14,155$ 294.90 $3,447$ $2,789$ 297.50 $5,541$ $14,431$ 294.95 $3,486$ $2,962$ 297.55 $5,583$ $14,709$ 295.00 $3,525$ $3,138$ 297.60 $5,624$ $14,989$ 295.05 $3,564$ $3,315$ 297.65 $5,665$ $15,271$ 295.10 $3,603$ $3,494$ 297.70 $5,707$ $15,556$ 295.15 $3,641$ $3,675$ 297.75 $5,748$ $15,842$ 295.20 $3,680$ $3,858$ 297.80 $5,790$ $16,131$ 295.25 $3,719$ $4,043$ 297.85 $5,831$ $16,421$ 295.35 $3,796$ $4,419$ 297.95 $5,914$ $17,008$ 295.40 $3,835$ $4,609$ 298.00 $5,955$ $17,305$ 295.45 $3,874$ $4,802$ 298.00 $5,955$ $17,305$ 295.55 $3,951$ $5,193$ 295.60 $3,990$ $5,392$ 295.70 $4,067$ $5,795$ 295.75 $4,106$ $5,999$ 295.80 $4,145$ $6,206$ $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,				,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				297.65		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	295.10	3,603			5,707	15,556
295.25 3,719 4,043 297.85 5,831 16,421 295.30 3,758 4,230 297.90 5,872 16,714 295.35 3,796 4,419 297.95 5,914 17,008 295.40 3,835 4,609 298.00 5,955 17,305 295.45 3,874 4,802 298.00 5,955 17,305 295.50 3,913 4,997 298.00 5,955 17,305 295.55 3,951 5,193 298.00 5,955 17,305 295.60 3,990 5,392 295.75 4,106 5,999 295.75 4,106 5,999 295.80 4,145 6,206 295.95 4,261 6,836 296.00 4,300 7,050 296.05 4,341 7,266 296.15 4,424 7,704 296.20 4,465 7,927 296.25 4,507 8,151 296.25 4,507 8,151 296.35 4,590 8,606 296.45 4,672 9,069 296.50 4,714	295.15	3,641	3,675	297.75	5,748	15,842
295.30 3,758 4,230 297.90 5,872 16,714 295.35 3,796 4,419 297.95 5,914 17,008 295.40 3,835 4,609 298.00 5,955 17,305 295.45 3,874 4,802 295.55 3,951 5,193 295.55 3,951 5,193 295.65 4,029 5,592 295.65 4,029 5,592 295.75 4,106 5,999 295.80 4,145 6,206 295.85 4,184 6,414 295.90 4,222 6,624 295.95 4,261 6,836 296.00 4,300 7,050 296.05 4,341 7,266 296.15 4,424 7,704 296.25 4,507 8,151 296.20 4,465 7,927 296.25 4,507 8,151 296.30 4,548 8,377 296.35 4,631 8,836 296.45 4,672 9,069 296.50 4,714 9,303	295.20	3,680	3,858	297.80	5,790	16,131
295.30 3,758 4,230 297.90 5,872 16,714 295.35 3,796 4,419 297.95 5,914 17,008 295.40 3,835 4,609 298.00 5,955 17,305 295.45 3,874 4,802 298.00 5,955 17,305 295.50 3,913 4,997 298.00 5,955 17,305 295.60 3,990 5,392 295.65 4,029 5,592 295.70 4,067 5,795 295.75 4,106 5,999 295.80 4,145 6,206 295.85 4,261 6,836 295.90 4,222 6,624 295.95 4,261 6,836 296.05 4,341 7,266 296.05 4,341 7,266 296.15 4,424 7,704 296.25 4,507 8,151 296.25 4,507 8,151 296.30 4,548 8,377 296.35 4,631 8,836 296.45 4,672 9,069 296.50 4,714 9,303 5,069 296.50	295.25	3,719	4,043	297.85	5,831	16,421
295.35 3,796 4,419 297.95 5,914 17,008 295.40 3,835 4,609 298.00 5,955 17,305 295.45 3,874 4,802 298.00 5,955 17,305 295.50 3,913 4,997 298.00 5,955 17,305 295.55 3,951 5,193 295.65 4,029 5,592 295.65 4,029 5,592 295.75 4,106 5,999 295.80 4,145 6,206 295.85 4,184 6,414 295.90 4,222 6,624 295.95 4,261 6,836 296.00 4,300 7,050 296.05 4,341 7,266 296.15 4,424 7,704 296.20 4,465 7,927 296.25 4,507 8,151 296.30 4,548 8,377 296.35 4,590 8,606 296.40 4,631 8,836 296.45 4,672 9,069 296.50 4,714 9,303	295.30	3,758		297.90		
295.40 3,835 4,609 298.00 5,955 17,305 295.45 3,874 4,802 295.50 3,913 4,997 295.55 3,951 5,193 295.60 3,990 5,392 295.65 4,029 5,592 295.70 4,067 5,795 295.75 4,106 5,999 295.80 4,145 6,206 295.85 4,184 6,414 295.90 4,222 6,624 295.95 4,261 6,836 296.00 4,300 7,050 296.15 4,465 7,927 296.25 4,507 8,151 296.35 4,548 8,377 296.35 4,590 8,606 296.40 4,631 8,836 296.45 4,672 9,069 296.50 4,714 9,303						
295.45 $3,874$ $4,802$ 295.50 $3,913$ $4,997$ 295.55 $3,951$ $5,193$ 295.60 $3,990$ $5,392$ 295.65 $4,029$ $5,592$ 295.70 $4,067$ $5,795$ 295.75 $4,106$ $5,999$ 295.80 $4,145$ $6,206$ 295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.15 $4,424$ $7,704$ 296.25 $4,507$ $8,151$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
295.50 $3,913$ $4,997$ 295.55 $3,951$ $5,193$ 295.60 $3,990$ $5,392$ 295.65 $4,029$ $5,592$ 295.70 $4,067$ $5,795$ 295.75 $4,106$ $5,999$ 295.80 $4,145$ $6,206$ 295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.15 $4,424$ $7,704$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$					0,000	,
295.55 $3,951$ $5,193$ 295.60 $3,990$ $5,392$ 295.65 $4,029$ $5,592$ 295.70 $4,067$ $5,795$ 295.75 $4,106$ $5,999$ 295.80 $4,145$ $6,206$ 295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.15 $4,424$ $7,704$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.40 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
295.60 $3,990$ $5,392$ 295.65 $4,029$ $5,592$ 295.70 $4,067$ $5,795$ 295.75 $4,106$ $5,999$ 295.80 $4,145$ $6,206$ 295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
295.65 $4,029$ $5,592$ 295.70 $4,067$ $5,795$ 295.75 $4,106$ $5,999$ 295.80 $4,145$ $6,206$ 295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
295.70 $4,067$ $5,795$ 295.75 $4,106$ $5,999$ 295.80 $4,145$ $6,206$ 295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
295.75 $4,106$ $5,999$ 295.80 $4,145$ $6,206$ 295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
295.80 $4,145$ $6,206$ 295.85 $4,184$ $6,414$ 295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.20 $4,465$ $7,927$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
295.90 $4,222$ $6,624$ 295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.20 $4,465$ $7,927$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
295.95 $4,261$ $6,836$ 296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.20 $4,465$ $7,927$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
296.00 $4,300$ $7,050$ 296.05 $4,341$ $7,266$ 296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.20 $4,465$ $7,927$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	295.95					
296.10 $4,383$ $7,484$ 296.15 $4,424$ $7,704$ 296.20 $4,465$ $7,927$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$	296.00	4,300	7,050			
296.15 $4,424$ $7,704$ 296.20 $4,465$ $7,927$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$	296.05	4,341	7,266			
296.15 $4,424$ $7,704$ 296.20 $4,465$ $7,927$ 296.25 $4,507$ $8,151$ 296.30 $4,548$ $8,377$ 296.35 $4,590$ $8,606$ 296.40 $4,631$ $8,836$ 296.45 $4,672$ $9,069$ 296.50 $4,714$ $9,303$	296.10	4,383	7,484			
296.20 4,465 7,927 296.25 4,507 8,151 296.30 4,548 8,377 296.35 4,590 8,606 296.40 4,631 8,836 296.45 4,672 9,069 296.50 4,714 9,303						
296.25 4,507 8,151 296.30 4,548 8,377 296.35 4,590 8,606 296.40 4,631 8,836 296.45 4,672 9,069 296.50 4,714 9,303						
296.304,5488,377296.354,5908,606296.404,6318,836296.454,6729,069296.504,7149,303						
296.35 4,590 8,606 296.40 4,631 8,836 296.45 4,672 9,069 296.50 4,714 9,303						
296.40 4,631 8,836 296.45 4,672 9,069 296.50 4,714 9,303						
296.45 4,672 9,069 296.50 4,714 9,303						
296.50 4,714 9,303						
290.00 4,700 9,040						
I	290.55	4,755	9,540			

Stage-Area-Storage for Pond 4P: infiltration basin

Appendix H: Post-Construction Inspection & Maintenance

LANGAN

Post Construction Inspection & Maintenance Checklist: Site

1.		-	opes (any slope 3:1 or steeper) ncy: Annual)	Yes	No	NA
	a.	-	etation and ground cover adequate.		\square	\square
		i.	Minimum 80% ground cover.	H	Ħ	
			Maintenance: Topsoil, rake and seed bare areas. Remove			
			any dead or dying plants and decaying plant material.			
			Replace dead and dying plants.			
		ii.	Excessively tall grass (greater than 6" in height)			
			Maintenance: Mow slopes 3:1 or flatter to have a grass			
			height of 4" to 6". Increase mowing frequency as			
			necessary. Steep slopes planted with meadow mix as			
			shown on the approved plans do not have to be mowed.			
		iii.	Unauthorized plants.			
			Maintenance: Remove any unauthorized plants, including			
			roots. Do not use herbicides. Topsoil, rake and seed the			
			area disturbed by their removal.			
	b.	Slop	e erosion.			
		i.				
			Maintenance: Topsoil, rake and seed bare areas.			
		ii.	Ruts less than 12" wide.			
			Maintenance: Prior to making any repairs, identify the source			
			of erosion and correct. Protect the slopes prior to any work			
			occurring. Backfill ruts and compact soil. Topsoil, rake and			
			seed bare areas. Alternatively, hydroseeding can be used to			
		:::	seed the slope.			
		iii.	Ruts greater than 12" wide.			
			<u>Maintenance</u> : Prior to making any repairs, identify the source of erosion and correct. Protect the slopes prior to any work			
			occurring. Re-grade, backfill ruts and compact soil. Install			
			erosion control mats on slopes 3:1 or steeper to protect the			
			re-graded slope. Topsoil, rake and seed bare areas. Inspect			
			on a weekly basis until 80% ground cover is achieved.			
			Alternatively, hydroseeding can be used to seed the slope.			
	C.	Une	ven settling			
			ntenance: Visually inspect for uneven settling. Classify the			
			ling based upon the categories below.			
		i.				
			Maintenance: No immediate action required. Re-inspect in 6			
			months.			
		ii.	Greater than 2" but less than 4" of settling.			
			Maintenance: Immediately repair. Re-grade and compact the			
			soil. Topsoil, rake and seed the area. Re-inspect in 6			
			months.			

	iii.	Greater than 4" of settling. <u>Maintenance</u> : Immediately stabilize the area and consult a NYS Licensed Professional Engineer within 2 weeks before making any additional repairs.	Yes	No	NA
2.	Swales		Yes	No	NA
	-	ncy: Annual)	_	_	_
	a. Infl	ow Points	Ц	Ц	Ц
	١.				
		<u>Maintenance</u> : Reseed bare areas. Remove any unauthorized			
		plants or any nuisance weeds and vegetation, including their			
		roots. Do not use any herbicides. Topsoil, rake and seed the disturbed area by their removal.			
	ii.				
		<u>Maintenance</u> : Immediately stabilize and repair any areas			
		where erosion around has occurred. Rake and seed the area.			
		Seed mixture shall meet the seed mixture requirements			
		specified on the approved plans.			
	iii.	Rip rap in good condition.			
		<u>Maintenance</u> : Replace stone, as necessary.			
	iv.	•			
		Maintenance: Remove and properly dispose of any			
		accumulated sediment when the depth is 20% of swale			
		design depth.			
		eck Dams	Ц	H	
	١.	No evidence of sediment buildup.			
		<u>Maintenance</u> : Remove accumulated sediment behind dams			
	ii.	when sediment depth is one-third the dam height. Stope in good condition			
		Stone in good condition. <u>Maintenance</u> : Replace stone, as necessary.			
	iii.	No evidence of erosion			
		<u>Maintenance</u> : Immediately stabilize and repair any areas			
		where erosion has occurred. Replace stone, as necessary.			
		Topsoil, rake and reseed area.			
	c. Ene	ergy Dissipaters		\square	
	i.				
		Maintenance: Remove and properly dispose of any			
		accumulated sediment when half of the void space is filled.			
	ii.	Rip rap in good condition.			
		<u>Maintenance</u> : Replace stone, as necessary.			
	iii.	No evidence of erosion.			
		Maintenance: Immediately stabilize and repair any areas			
		where erosion has occurred. Replace stone, as necessary.			

Topsoil, rake and reseed.

3.		verts		Annual	Yes	No	NA
	a.	-	dwal	Annual) Ils or End sections good condition, no need for repairs. Cracks or displacement. <u>Maintenance</u> : Repair any minor cracks. If minor displacement is observed, re-inspect in 6 months. Replace structure if major cracks or significant			
			b.	<i>displacement is observed.</i> Minor spalling (<1").			
			c.	<u>Maintenance</u> : Repair any minor spalling. Major spalling (rebars exposed).			
		ii.		<u>Maintenance</u> : Replace structure. ar of sediment. <u>intenance</u> : Remove and properly dispose of any			
		iii.	<i>acc</i> Cle <u>Ma</u>	cumulated sediment. ar of debris and trash. <u>intenance</u> : Remove and properly dispose of any debris			
	b.		rap ir	d trash. n good condition. <u>ance</u> : Replace stone, as necessary.			
	C.	Pipe <u>Mai</u>	es fre <u>nten</u>	e from damage, corrosion, and sediment. <u>ance</u> : Immediately repair any damaged pipes. If pipes are damaged and cannot be repaired, replace the pipes.			

Remove and properly dispose of any sediment.

Notes:

- 1. The site must be returned to the approved conditions when any repairs are made.
- 2. Unauthorized plants are any plants that are growing or have been installed that are not any of the plants shown on the approved plans.
- 3. All seed mixtures shall meet the seed mixture requirements specified on the approved plans.
- 4. Replace any dead or dying plants with plants specified in the planting schedule shown on the approved plans.

Comments:

Actions to be taken:

Post Construction Inspection and Maintenance Checklist Infiltration Basin

1.	Eml	bank	ment			
	(Fre	quer	ncy: Annual)	Yes	No	NA
	а.	Veg	etation and ground cover adequate.			
		i.	Minimum 80% ground cover.			
			Maintenance: Topsoil, rake and seed bare areas. Replace			
			dead and dying plants.			
		ii.	Excessively tall grass (greater than 6" in height)			
			Maintenance: Mow grass to have a height of 4" to 6".			
			Increase mowing frequency as necessary.			
		iii.	Unauthorized plants.			
			Maintenance: Remove any unauthorized plants, including			
			roots. Do not use herbicides. Topsoil, rake and seed the			
			area disturbed by their removal.			
	b.	Slop	be erosion.			
		i.	Small bare areas (min. 50 square feet).			
			Maintenance: Topsoil, rake and seed bare areas.			
		ii.	Ruts less than 12" wide.			
			Maintenance: Prior to making any repairs, identify the source			
			of erosion and correct. Protect the slopes prior to any work			
			occurring. Backfill ruts and compact soil. Topsoil, rake and			
			seed bare areas. Alternatively, hydroseeding can be used to			
			seed the slope.	_	_	_
		iii.	Ruts greater than 12" wide.			
			<u>Maintenance</u> : Prior to making any repairs, identify the source			
			of erosion and correct. Protect the slopes prior to any work			
			occurring. Re-grade, backfill ruts and compact soil. Install			
			erosion control mats on slopes 3:1 or steeper to protect the			
			re-graded slope. Topsoil, rake and seed bare areas. Inspect			
			on a weekly basis until 80% ground cover is achieved.			
			Alternatively, hydroseeding can be used to seed the slope.			
	С.		ven settling			
			ntenance: Install permanent benchmarks or other permanent			
			rence point in each practice to be used with as-built elevations			
			neasure uneven settling.			
		i.	Greater than 0" but less than 2" of settling.			
			Maintenance: No immediate action required. Re-inspect in 6			
			months.			
		ii.	Greater than 2" but less than 4" of settling.			
			<u>Maintenance</u> : Immediately repair. Re-grade and compact the			
			soil. Topsoil, rake and seed the area. Re-inspect in 6			

months.

2.

	iii. Greater than 4" of settling.	Yes	No	NA
	<u>Maintenance</u> : Immediately stabilize the area and consult a NYS Licensed Professional Engineer within 2 weeks before making any additional repairs.			
d.	Animal burrows. <u>Maintenance</u> : Fill animal burrows with similar material to the			
	existing material and compact. Rake and seed the area.			
e.	Cracking, bulging, or sliding of slope.			
	i. Upstream face.		Ц	
	ii. Downstream face.		Ц	Ц
	iii. At or beyond downstream toe.	Ц	Ц	Ц
	iv. At or beyond upstream toe.	Ц	Ц	Ц
	v. Emergency spillway.			
	<u>Maintenance</u> : Immediately stabilize the slope and consult an NYS Licensed Professional Engineer within 2 weeks before making any			
۲	additional repairs.			
f.	Seeps/leaks at downstream face.			
	<u>Maintenance</u> : Look for changes in the color of the vegetation,			
~	plant species and their density to help locate the leak source.			
g.	Rip rap slope protection failure. <u>Maintenance</u> : Stabilize slope, re-grade and compact the soil.			
	Replace stone as necessary.			
i.	Emergency spillway clear of any obstructions or debris.			
1.	<u>Maintenance</u> : Remove and properly dispose of any trash and			
	debris. Remove any unauthorized plants or any nuisance weeds			
	and vegetation, including their roots. Do not use any herbicides.			
	Topsoil, rake and seed the disturbed area by their removal.			
Infl	ow Points			
(Fre	equency: Annual)	Yes	No	NA
а.	Vegetation and ground cover adequate.			
	Maintenance: Reseed bare areas. Remove any unauthorized			
	plants or any nuisance weeds and vegetation, including their roots.			
	Do not use any herbicides. Topsoil, rake and seed the disturbed			
	area by their removal.			
b.	Free from erosion/undercutting.			
	Maintenance: Immediately stabilize and repair any areas where			
	erosion around has occurred. Rake and seed the area. Seed			
	mixture shall meet the seed mixture requirements specified on			
	the approved plans.			
C.	Rip rap in good condition.			
	Maintenance: Replace stone, as necessary.			

	d.	<u>Mai</u> sev	es free from damage, corrosion, and sediment. <u>ntenance</u> : Immediately repair any damaged pipes. If pipes are erely damaged and cannot be repaired, replace the pipes. nove and properly dispose of any sediment.	Yes	No	
3.		que	tructure/Overflow Spillway hcy: Annual) let structure in good condition. In good condition, no need for repairs. a. Cracks or displacement <u>Maintenance</u> : Repair any minor cracks or displacement. Replace structure if major cracks or displacement is	Yes	No	NA
			observed. b. Minor spalling (<1").			
			<u>Maintenance</u> : Repair any minor spalling observed. c. Major spalling (rebars exposed).			
			<u>Maintenance</u> : Replace structure. d. Joint failures.			
			<u>Maintenance</u> : Replace structure. e. Water tightness. <u>Maintenance</u> : Reseal structure for water tightness if minor leaks are observed. Replace structure if significant			
		ii.	leaks are observed. Clear of sediment. Maintenance: Remove and preparly dispase of any			
		iii.	<u>Maintenance</u> : Remove and properly dispose of any accumulated sediment when at 50% of sump height. Clear of debris and trash. <u>Maintenance</u> : Remove and properly dispose of any debris and			
		iv.	trash. Pipes free from damage, corrosion, and sediment. <u>Maintenance</u> : Immediately repair any damaged pipes. If pipes are severely damaged and cannot be repaired, replace			
	b.	Ove i.	the pipes. Remove and properly dispose of any sediment. In good condition, no need for repairs.			
		ii.	<u>Maintenance</u> : Replace stone, as necessary. Clear of sediment. <u>Maintenance</u> : Remove and properly dispose of any			
		iii.	accumulated sediment when half of the void space is filled. Clear of debris and trash. <u>Maintenance</u> : Remove and properly dispose of any debris and trash.			

		iv.	No evidence of erosion.	Yes	No □	NA
		īv.	<u>Maintenance</u> : Immediately stabilize and repair any areas where erosion occurred around or below the overflow			
			spillway. Replace stone, as necessary. Topsoil, rake and			
			seed the area.			
		V.	No evidence of erosion at downstream toe of drop structure or weir spillway.			
			Maintenance: Immediately stabilize and repair any areas			
			where erosion has occurred. Replace stone, as necessary.			
		-	Topsoil, rake and reseed.			
4.			nt Forebay			
		-	ncy: Monthly)	Yes	No	
	a.		e of sediment.			
			intenance: Remove and properly dispose of any accumulated			
	b.		<i>liment when at 50% of the design capacity.</i> evidence of erosion.			
	D.		intenance: Immediately stabilize and repair any areas where			
			sion has occurred. Topsoil, rake and seed the area.			
	c.		erflow Spillway.			
	С.	i.	In good working condition, no need for repairs.	H	H	H
			<u>Maintenance</u> : Replace stone, as necessary.			
		ii.	Clear of sediment.		\Box	
			Maintenance: Remove and properly dispose of any			
			accumulated sediment when half of the void space is filled.			
		iii.	Clear of trash and debris.		\Box	
			Maintenance: Remove and properly dispose of any debris and			
			trash.			
		iv.	No evidence of erosion.			
			Maintenance: Immediately stabilize and repair any areas			
			where erosion occurred around or below the overflow			
			spillway. Replace stone, as necessary. Topsoil, rake and			
			seed the area.			
		V.	No evidence of erosion at downstream toe of drop structure or weir spillway.			
			Maintenance: Immediately stabilize and repair any areas			
			where erosion has occurred. Replace stone, as necessary.			
			Topsoil, rake and seed the area.			
5.	Deb	oris C	Cleanout			
	(Fre	-	ncy: Monthly)	Yes	No	NA
	a.		nch/basin surface clear of debris.			
			intenance: Remove and properly dispose of any trash and			
		deb		_		
	b.		ow pipes clear of debris.			
			intenance: Remove and properly dispose of any trash and			
		deb	nis.			

		Yes	No	NA
C.	Overflow spillway clear of debris.			
	Maintenance: Remove and properly dispose of any trash and			
	debris.			
d.	Inlet area clear of debris.		\square	\Box
0	<u>Maintenance</u> : Remove and properly dispose of any trash and			
	debris.			
Dev	vatering			
	quency: Monthly)	Yes	No	NA
а .	Dewaters between storms.			\square
	Maintenance: Remove excess sediment accumulation. If still not			
	dewatering fully and underdrain system present, flush underdrain			
	system to remove any trapped sediment. If underdrain system			
	not present, contact a NYS licensed Professional Engineer.			
c.	Underdrain present and no evidence of standing water.		\square	\Box
	Maintenance: Flush underdrain system to remove any trapped			
	sediment. If still not dewatering fully, contact a NYS licensed			
	Professional Engineer.			
	0			
Bas	in Vegetation			
	in Vegetation quency: Monthly)	Yes	No	NA
	quency: Monthly)	Yes	No	NA
(Fre	-	Yes	No	NA
(Fre	quency: Monthly) No placement of unapproved plants.	Yes	No	NA
(Fre	quency: Monthly) No placement of unapproved plants. <u>Maintenance</u> : Remove any unauthorized plants or any nuisance	Yes	No	NA □
(Fre	quency: Monthly) No placement of unapproved plants. <u>Maintenance</u> : Remove any unauthorized plants or any nuisance weeds and vegetation, including their roots. Do not use	Yes	No	
(Fre a.	quency: Monthly) No placement of unapproved plants. <u>Maintenance</u> : Remove any unauthorized plants or any nuisance weeds and vegetation, including their roots. Do not use herbicides.	Yes	No	
(Fre a.	quency: Monthly) No placement of unapproved plants. <u>Maintenance</u> : Remove any unauthorized plants or any nuisance weeds and vegetation, including their roots. Do not use herbicides. Grass height not greater than 6".	Yes	No	NA
(Fre a.	quency: Monthly)No placement of unapproved plants.Maintenance: Remove any unauthorized plants or any nuisanceweeds and vegetation, including their roots. Do not useherbicides.Grass height not greater than 6".Maintenance: Mow grass. Increase frequency of mowing as	Yes	No	
(Fre a. b.	quency: Monthly)No placement of unapproved plants.Maintenance: Remove any unauthorized plants or any nuisanceweeds and vegetation, including their roots. Do not useherbicides.Grass height not greater than 6".Maintenance: Mow grass. Increase frequency of mowing asnecessary to keep grass heights less than 6".	Yes	No	
(Fre a. b.	quency: Monthly)No placement of unapproved plants.Maintenance: Remove any unauthorized plants or any nuisanceweeds and vegetation, including their roots. Do not useherbicides.Grass height not greater than 6".Maintenance: Mow grass. Increase frequency of mowing asnecessary to keep grass heights less than 6".Sparse or bare vegetation in more than 10% of basin area.	Yes	No	
(Fre a. b.	quency: Monthly)No placement of unapproved plants.Maintenance: Remove any unauthorized plants or any nuisanceweeds and vegetation, including their roots. Do not useherbicides.Grass height not greater than 6".Maintenance: Mow grass. Increase frequency of mowing asnecessary to keep grass heights less than 6".Sparse or bare vegetation in more than 10% of basin area.Maintenance: Install replacement plants, as necessary. Topsoil,	Yes	No	
(Fre a. b. c.	quency: Monthly)No placement of unapproved plants.Maintenance: Remove any unauthorized plants or any nuisanceweeds and vegetation, including their roots. Do not useherbicides.Grass height not greater than 6".Maintenance: Mow grass. Increase frequency of mowing asnecessary to keep grass heights less than 6".Sparse or bare vegetation in more than 10% of basin area.Maintenance: Install replacement plants, as necessary. Topsoil,rake and seed the area.	Yes	No	
(Fre a. b. c.	quency: Monthly)No placement of unapproved plants.Maintenance: Remove any unauthorized plants or any nuisanceweeds and vegetation, including their roots. Do not useherbicides.Grass height not greater than 6".Maintenance: Mow grass. Increase frequency of mowing asnecessary to keep grass heights less than 6".Sparse or bare vegetation in more than 10% of basin area.Maintenance: Install replacement plants, as necessary. Topsoil,rake and seed the area.Nuisance weeds or vegetation taking over more than 25% of the	Yes	No	
(Fre a. b. c.	quency: Monthly)No placement of unapproved plants.Maintenance: Remove any unauthorized plants or any nuisanceweeds and vegetation, including their roots. Do not useherbicides.Grass height not greater than 6".Maintenance: Mow grass. Increase frequency of mowing asnecessary to keep grass heights less than 6".Sparse or bare vegetation in more than 10% of basin area.Maintenance: Install replacement plants, as necessary. Topsoil,rake and seed the area.Nuisance weeds or vegetation taking over more than 25% of thebasin.	Yes	No	

Notes:

6.

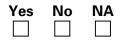
7.

- 1. The site must be returned to the approved conditions when any repairs are made.
- 2. Unauthorized plants are any plants that are growing or have been installed that are not any of the plants shown on the approved plans.
- 3. All seed mixtures shall meet the seed mixture requirements specified on the approved plans.

4. Replaced rip rap stone shall meet the stone requirements specified on the approved plans.

Comments:

Actions to be taken:


Post Construction Inspection & Maintenance Checklist: Underground Infiltration System

1.			Outlet Structures			
	(Fre	equenc	y: Annual)	Yes	No	NA
	а.		rete structure			
		i. I	n good condition, no need for repairs.			
			a. Cracks or displacement.			
			Maintenance: Repair any minor cracks. If minor			
			displacement is observed, re-inspect in 6 months.			
			Replace structure if major cracks or significant			
			displacement is observed.		_	_
			b. Minor spalling (<1").			
			<u>Maintenance</u> : Repair any minor spalling.		_	
			c. Major spalling (rebars exposed).			
			<u>Maintenance</u> : Replace structure.		_	
			d. Joint failures.			
			<u>Maintenance</u> : Replace structure.	_	_	_
			e. Water tightness.			
			<u>Maintenance</u> : Reseal structure for water tightness if			
			minor leaks are observed. Replace structure if significant			
			leaks are observed.	_	_	_
			Clear of sediment.			
		_	<u>Maintenance</u> : Remove and properly dispose of any			
			accumulated sediment when at 50% of sump height.			
			Clear of debris and trash.			
			Maintenance: Remove and properly dispose of any debris and			
			rash.	_		_
			Pipes free from damage, corrosion, and sediment.			
			Maintenance: Immediately repair any damaged pipes. If			
			pipes are severely damaged and cannot be repaired, replace			
		t	he pipes. Remove and properly dispose of any sediment.			
2.	Ноа	der Sy	vetem			
۷.		-	y: Annual)	Yes	No	NA
	a.	-	of debris and litter.	\square	\square	
	0		tenance: Use a high pressure nozzle with rear facing jets to			
			the sediment and debris into the upstream structure.			
			ove sediment and debris from the sump of the upstream			
		struct				
	b.		of sediment.			
			tenance: Remove and properly dispose of sediment when			
			nulated over 4 inches. Use a high pressure nozzle with rear			
			g jets to wash the sediment into the upstream structure.			

Remove sediment from the sump of the upstream structure.

3.	lsol	ator/Containment Row			
	(Fre	equency: Annual)	Yes	No	NA
	а.	Clear of debris and litter.			
		Maintenance: Remove and properly dispose of any debris and			
		trash. Use a high pressure nozzle with rear facing jets to wash the			
		debris into the upstream structure. Remove debris from the sump			
		of the upstream structure.			
	b.	Clear of sediment.			
		Maintenance: Remove and properly dispose of sediment when			
		accumulated over 4 inches. Use a high pressure nozzle with rear			
		facing jets to wash the sediment into the upstream structure.			
		Remove sediment from the sump of the upstream structure.			
4.	Und	lerground Chambers			
	(Fre	equency: Annual)	Yes	No	NA
	а.	Chambers are in good condition.			
		<u>Maintenance</u> : Inspect the interior of the chambers using a CCTV or			
		comparable inspection method through the inspection port. If			
		deficiencies are noted immediately contact a NYS licensed			
		Professional Engineer.			
	b.	Clear of debris and litter.			
		Maintenance: Remove and properly dispose of any debris and			
		trash. Use a high pressure nozzle with rear facing jets to wash the			
		debris into the upstream structure. Remove debris from the sump			
		of the upstream structure.			
	c.	Clear of sediment.			
		Maintenance: Remove and properly dispose of sediment when			
		accumulated over 4 inches. Use a high pressure nozzle with rear			
		facing jets to wash the sediment into the upstream structure.			
		Remove sediment from the sump of the upstream structure.			
	d.	Dewaters between storms.			
		Maintenance: If standing water during inspection, recheck after 48			
		hours. If standing water is still present, contact a NYS licensed			
		Professional Engineer.			
5.		rounding Site			
	(Fre	equency: Monthly)	Yes	No	NA
	а.	Vegetation and ground cover adequate.			
		Maintenance: Reseed bare areas. Remove any unauthorized			
		plants or any nuisance weeds and vegetation, including their roots.			
		Do not use any herbicides. Topsoil, rake and seed the disturbed			
		area by their removal.		_	
	b.	Area free from depressions.			
		Maintenance: Immediately repair. Re-grade and compact the soil.			
		Topsoil, rake and seed the area. Re-inspect in 6 months.			

- c. Unauthorized plants over system. <u>Maintenance</u>: Remove any unauthorized plants, including roots. Do not use herbicides. Topsoil, rake and seed the area disturbed by their removal.
 - d. Unauthorized structures over system. <u>Maintenance</u>: Remove any unauthorized structures. Immediately inspect the interior of the chambers using a CCTV or comparable inspection method through the inspection port. If deficiencies are noted immediately contact a NYS licensed Professional Engineer.

Notes:

- 1. The site must be returned to the approved conditions when any repairs are made.
- 2. All seed mixtures shall meet the seed mixture requirements specified on the approved plans.

Comments:

Actions to be taken: